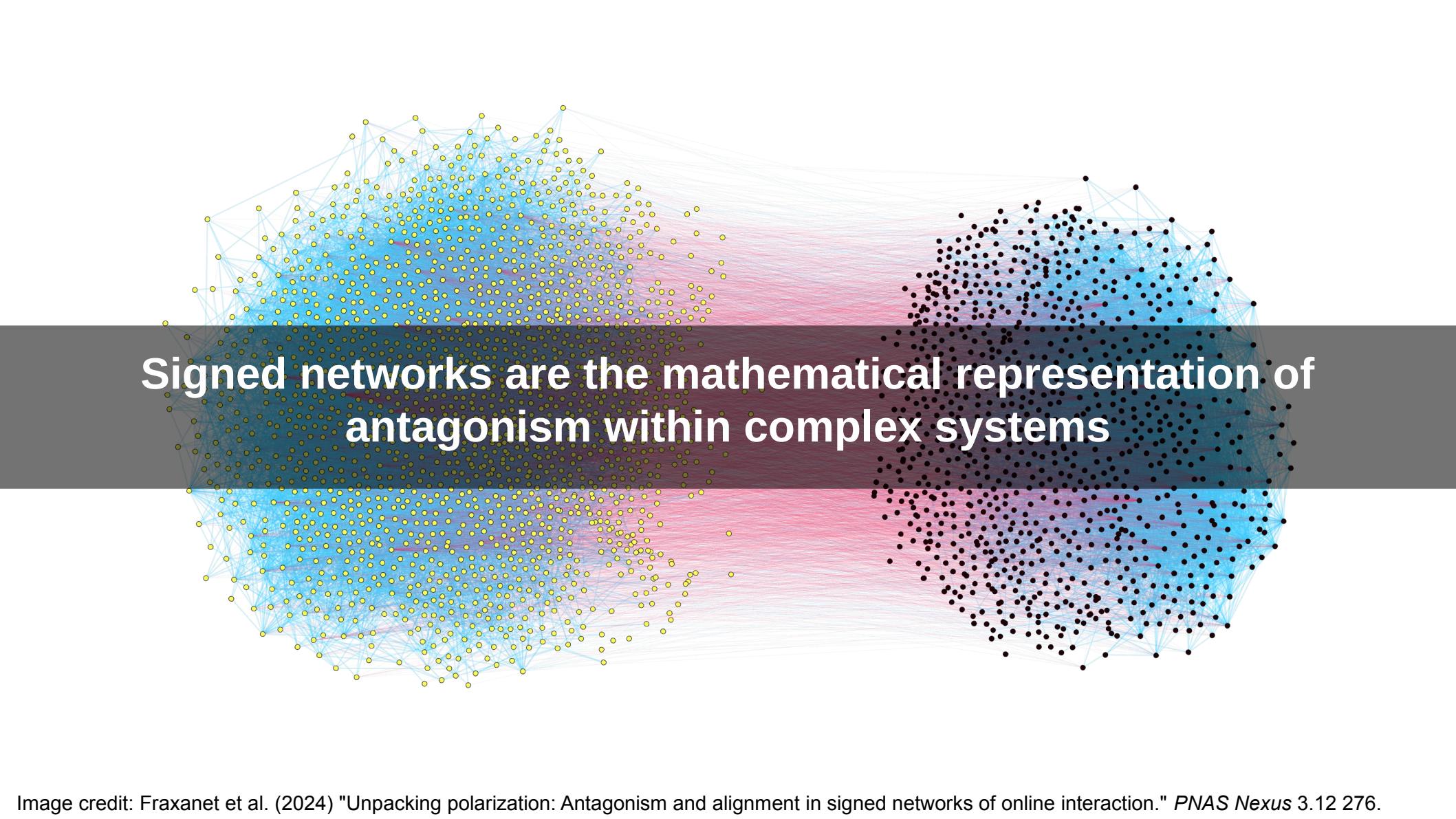


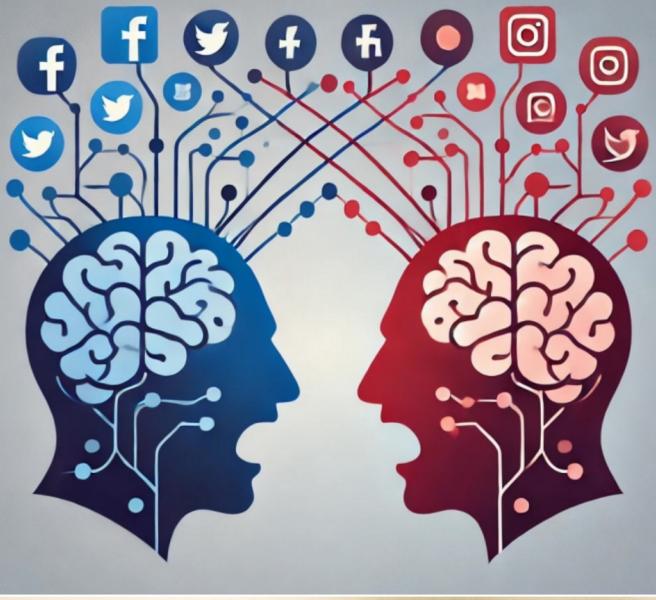
Friends, Foes, and Factions: The math behind signed networks

Fernando Díaz Díaz

Pisan Young Seminars in Applied and NUmerical
Mathematics (PYSANUM)



Signed networks are the mathematical representation of antagonism within complex systems



LETTER

nature

Stability criteria for complex ecosystems

Stefano Allesina^{1,2} & Si Tang¹

LETTER

nature

Stability criteria for complex ecosystems

Stefano Allesina^{1,2} & Si Tang¹

BMC Systems Biology

Open Access

Research article

The regulatory network of *E. coli* metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response

Areejit Samal¹ and Sanjay Jain *^{1,2,3}

ARTICLE

<https://doi.org/10.1038/s41467-019-10548-3>

OPEN

Structural balance emerges and explains performance in risky decision-making

Omid Askarischani¹, Jacqueline Ng Lane², Francesco Bullo^{3,4}, Noah E. Friedkin¹, Ambuj K. Singh¹ & Brian Uzzi^{6,7}

The role of negative edges

ARTICLE

<https://doi.org/10.1038/s41467-019-10548-3>

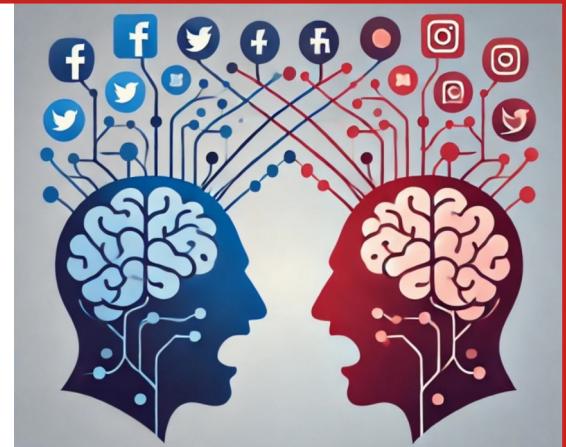
OPEN

Structural balance emerges and explains performance in risky decision-making

Omid Askarischani¹, Jacqueline Ng Lane², Francesco Bullo^{3,4}, Noah E. Friedkin¹, Ambuj K. Singh¹ & Brian Uzzi^{6,7}

Triadic influence as a proxy for compatibility in social relationships

Miguel Ruiz-García ^{a,b,c,2,1}, Juan Ozaita ^{c,1}, María Pereda ^{b,d}, Antonio Alfonso ^e, Pablo Brañas-Garza ^e, José A. Cuesta ^{b,c,f}, and Angel Sánchez ^{b,c,f}



PNAS

The human brain is intrinsically organized into dynamic, anticorrelated functional networks

Michael D. Fox*†, Abraham Z. Snyder*‡, Justin L. Vincent*, Maurizio Corbetta‡, David C. Van Essen§, and Marcus E. Raichle*‡§¶

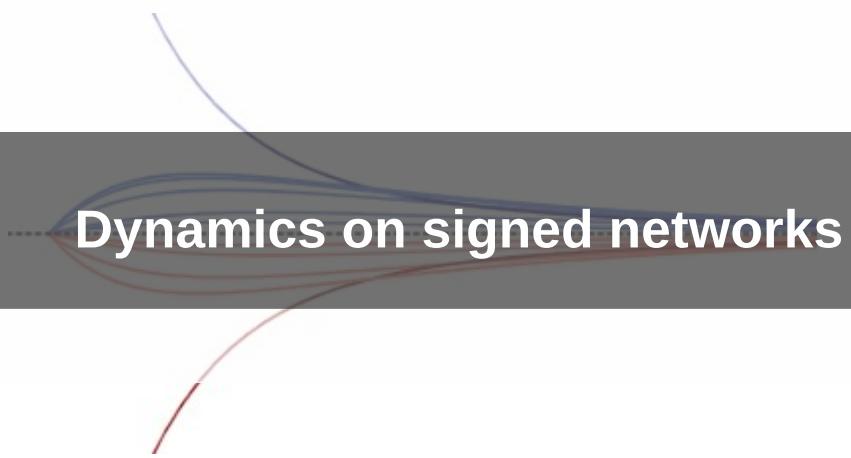
PNAS

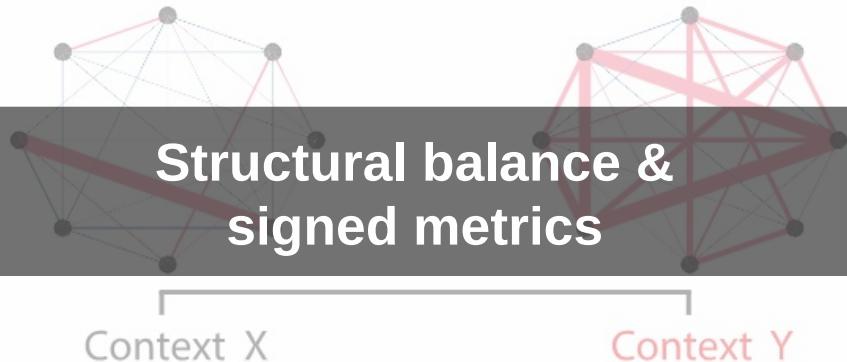
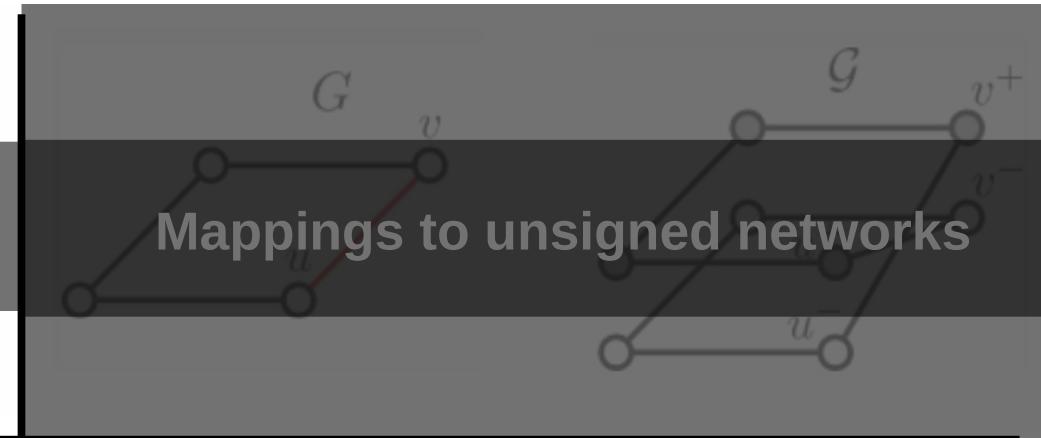
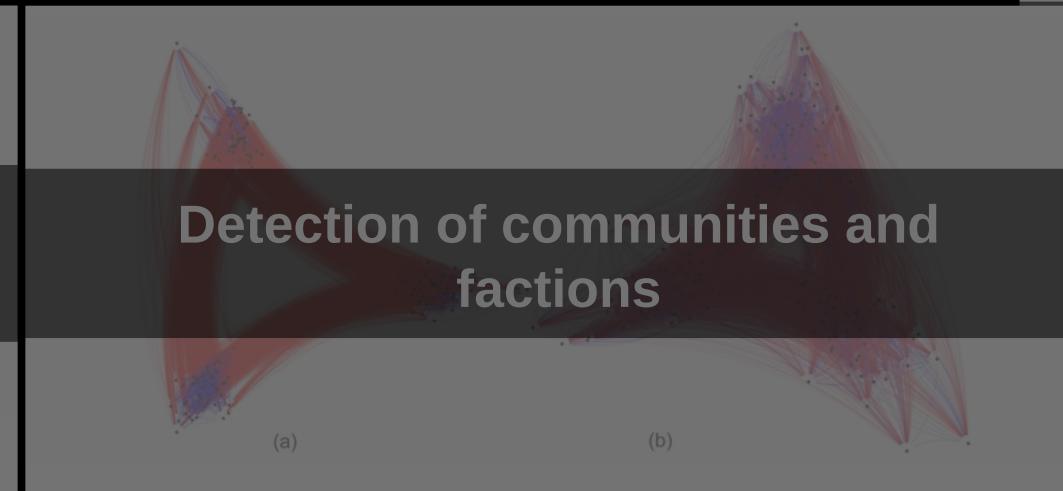
The human brain is intrinsically organized into dynamic, anticorrelated functional networks

Michael D. Fox*†, Abraham Z. Snyder*‡, Justin L. Vincent*, Maurizio Corbetta‡, David C. Van Essen§, and Marcus E. Raichle*‡§¶

Power and Interdependence

ROBERT O. KEOHANE AND JOSEPH S. NYE, JR





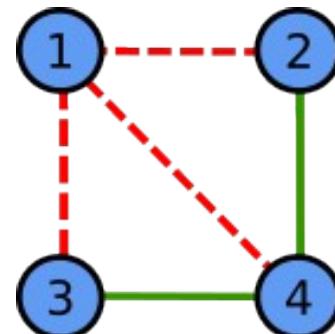
Mathematical representation of a signed network

Definition 1: a **signed network** is a triple $G = (V, E, \sigma)$, where V is the set of nodes, E is the set of edges, and $\sigma : E \rightarrow \{+1, -1\}$ is a function that assigns a sign (+ or -) to each edge.

Mathematical representation of a signed network

Definition 1: a **signed network** is a triple $G = (V, E, \sigma)$, where V is the set of nodes, E is the set of edges, and $\sigma : E \rightarrow \{+1, -1\}$ is a function that assigns a sign (+ or -) to each edge.

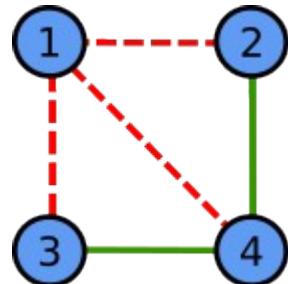
Definition 2: the **adjacency matrix A** of a signed network is a square matrix with elements $A_{ij} = \sigma(e)$ when $e = (i, j)$, and zero otherwise.



$$A = \begin{pmatrix} 0 & -1 & -1 & -1 \\ -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ -1 & 1 & 1 & 0 \end{pmatrix}$$

The walk lemma for signed networks

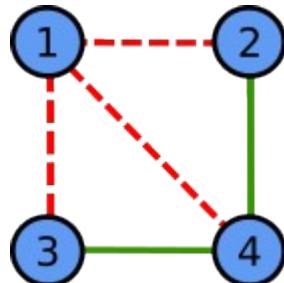
Definition 3: a **walk** is an ordered sequence of (not necessarily different) edges, where consecutive edges are incident to the same node. The **sign** of a walk is the product of the signs of its edges.



The walk lemma for signed networks

Definition 3: a **walk** is an ordered sequence of (not necessarily different) edges, where consecutive edges are incident to the same node. The **sign** of a walk is the product of the signs of its edges.

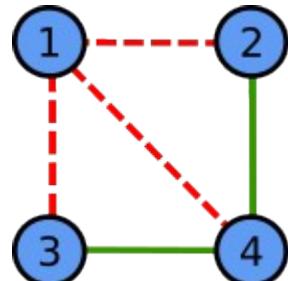
Lemma 4 (walk lemma): the (i,j) th element of the k -th power of the adjacency matrix, $(A^k)_{ij}$, counts the difference between the number of positive walks and the number of negative walks of length k between nodes i and j .



The walk lemma for signed networks

Definition 3: a **walk** is an ordered sequence of (not necessarily different) edges, where consecutive edges are incident to the same node. The **sign** of a walk is the product of the signs of its edges.

Lemma 4 (walk lemma): the (i,j) th element of the k -th power of the adjacency matrix, $(A^k)_{ij}$, counts the difference between the number of positive walks and the number of negative walks of length k between nodes i and j .



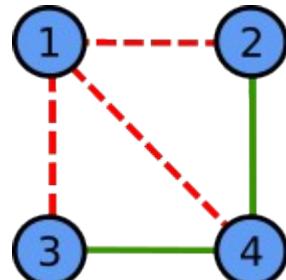
$$A^3 = \begin{pmatrix} 4 & -5 & -5 & -5 \\ -5 & 2 & 2 & 5 \\ -5 & 2 & 2 & 5 \\ -5 & 5 & 5 & 4 \end{pmatrix}$$

$$\begin{aligned} W_1 &= \{e_{12}, e_{24}, e_{43}\} \\ W_2 &= \{e_{12}, e_{21}, e_{13}\} \\ W_3 &= \{e_{14}, e_{41}, e_{13}\} \\ W_4 &= \{e_{13}, e_{34}, e_{43}\} \\ W_5 &= \{e_{13}, e_{31}, e_{13}\} \end{aligned}$$

The walk lemma for signed networks

Definition 3: a **walk** is an ordered sequence of (not necessarily different) edges, where consecutive edges are incident to the same node. The **sign** of a walk is the product of the signs of its edges.

Lemma 4 (walk lemma): the (i,j) th element of the k -th power of the adjacency matrix, $(A^k)_{ij}$, counts the difference between the number of positive walks and the number of negative walks of length k between nodes i and j .



$$A^3 = \begin{pmatrix} 4 & -5 & -5 & -5 \\ -5 & 2 & 2 & 5 \\ -5 & 2 & 2 & 5 \\ -5 & 5 & 5 & 4 \end{pmatrix}$$

$$\begin{aligned} W_1 &= \{e_{12}, e_{24}, e_{43}\} \\ W_2 &= \{e_{12}, e_{21}, e_{13}\} \\ W_3 &= \{e_{14}, e_{41}, e_{13}\} \\ W_4 &= \{e_{13}, e_{34}, e_{43}\} \\ W_5 &= \{e_{13}, e_{31}, e_{13}\} \end{aligned}$$

COMBINATORICS

ALGEBRA

Harary's theory

Definition 5: A cycle or closed walk is **balanced** or positive if it contains an even number of negative edges.

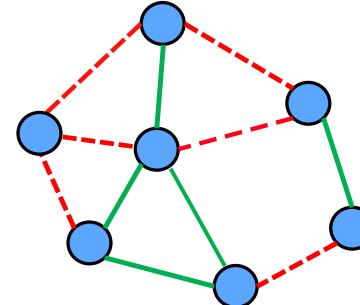
- Harary, F. (1953). "On the notion of balance of a signed graph". *Michigan Mathematical Journal*, 2(2), 143-146.
- Cartwright, D., & Harary, F. (1956). "Structural balance: a generalization of Heider's theory". *Psychological review*, 63(5), 277.

Harary's theory

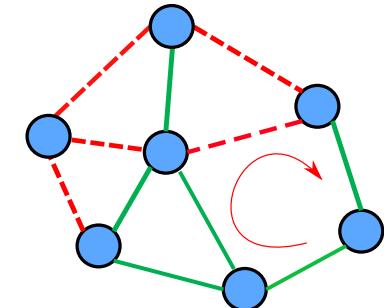
Definition 5: A cycle or closed walk is **balanced** or positive if it contains an even number of negative edges.

Definition 6: A signed network is **balanced** if every cycle within it is balanced. Otherwise, the network is **unbalanced**.

Balanced graph



Unbalanced graph



- Harary, F. (1953). "On the notion of balance of a signed graph". *Michigan Mathematical Journal*, 2(2), 143-146.
- Cartwright, D., & Harary, F. (1956). "Structural balance: a generalization of Heider's theory". *Psychological review*, 63(5), 277.

Balance theorems

Theorem 7 (Harary): a graph is balanced iff the node set can be split into two **balanced fractions**, such that:

- Links within each balanced fraction are positive, and
- Links between different balanced fractions are negative.

- Harary, F. (1953). "On the notion of balance of a signed graph". *Michigan Mathematical Journal*, 2(2), 143-146.
- Acharya (1980). "Spectral criterion for cycle balance in networks". *Journal of Graph Theory*, 4(1), 1-11.
- Zaslavsky (1982). "Signed graphs". *Discrete Applied Mathematics* 4, 47-74.

Balance theorems

Theorem 7 (Harary): a graph is balanced iff the node set can be split into two **balanced factions**, such that:

- Links within each balanced faction are positive, and
- Links between different balanced factions are negative.

Theorem 8 (Acharya): a signed graph with adjacency matrix A is balanced if and only if A and $|A|$ have the same spectrum.

- Harary, F. (1953). "On the notion of balance of a signed graph". *Michigan Mathematical Journal*, 2(2), 143-146.
- Acharya (1980). "Spectral criterion for cycle balance in networks". *Journal of Graph Theory*, 4(1), 1-11.
- Zaslavsky (1982). "Signed graphs". *Discrete Applied Mathematics* 4, 47-74.

How close is a network to a perfectly balanced state?

How close is a network to a perfectly balanced state?

Motif-based approach: count balanced triangles or squares.

- Cartwright and Harary (1956), *Psychological Review* 63.5, 277

Frustration-based approach (spin glass theory): count frustrated edges.

- Aref and Wilson (2019), *Journal of Complex Networks* 7.2, 163–189

Dynamics-based approach: convergence to stationary state of a diffusive process as a proxy for balance.

- Kunegis et al (2010), *Proceedings of the 2010 SIAM international conference on data mining*, pp 559–570

Walk-based approach: count positive and negative walks as a proxy for cycles.

- Estrada and Benzi (2014), *Physical Review E*, 90.4, 042802
- Kirkley, Cantwell, Newman (2019), *Physical Review E* 99.1, 012320

Local (node-based) levels of balance

Node 3 has medium balance

Local (node-based) levels of balance

Node 3 has medium balance

Challenges:

- How to enumerate all cycles? → **Walk lemma**
- How to aggregate cycles of different length? → **Weight factor (inverse factorial)**

Balance index

1) Count balanced and unbalanced closed walks (walk lemma): $(A^k)_{ii}$

Balance index

1) Count balanced and unbalanced closed walks (walk lemma): $(A^k)_{ii}$

2) Include all walk lengths:

$$\sum_{k=0}^{\infty} \sum_{i=1}^N (A^k)_{ii}$$

Balance index

1) Count balanced and unbalanced closed walks (walk lemma): $(A^k)_{ii}$

2) Include all walk lengths: $\sum_{k=0}^{\infty} \sum_{i=1}^N (A^k)_{ii}$

3) Penalize longer walks: $\sum_{k=0}^{\infty} \sum_{i=1}^N \frac{(A^k)_{ii}}{k!} = \text{tr}(e^A)$

Balance index

1) Count balanced and unbalanced closed walks (walk lemma): $(A^k)_{ii}$

2) Include all walk lengths: $\sum_{k=0}^{\infty} \sum_{i=1}^N (A^k)_{ii}$

3) Penalize longer walks: $\sum_{k=0}^{\infty} \sum_{i=1}^N \frac{(A^k)_{ii}}{k!} = \text{tr}(e^A)$

4) Normalize:

$$\kappa := \frac{\text{tr}(e^A)}{\text{tr}(e^{|A|})}$$

Balance index

1) Count balanced and unbalanced closed walks (walk lemma): $(A^k)_{ii}$

2) Include all walk lengths:

$$\sum_{k=0}^{\infty} \sum_{i=1}^N (A^k)_{ii}$$

3) Penalize longer walks:

$$\sum_{k=0}^{\infty} \sum_{i=1}^N \frac{(A^k)_{ii}}{k!} = \text{tr}(e^A)$$

4) Normalize:

$$\kappa := \frac{\text{tr}(e^A)}{\text{tr}(e^{|A|})}$$

Balanced graph: $\kappa = 1$
Unbalanced graph: $0 < \kappa < 1$

Balance index

1) Count balanced and unbalanced closed walks (walk lemma):

$$(A^k)_{ii}$$

2) Include all walk lengths:

$$\sum_{k=0}^{\infty} \sum_{i=1}^N (A^k)_{ii}$$

3) Penalize longer walks:

$$\sum_{k=0}^{\infty} \sum_{i=1}^N \frac{(A^k)_{ii}}{k!} = \text{tr}(e^A)$$

4) Normalize:

$$\kappa := \frac{\text{tr}(e^A)}{\text{tr}(e^{|A|})}$$

Balanced graph: $\kappa = 1$
Unbalanced graph: $0 < \kappa < 1$

Also local version!

$$\kappa_i := \frac{(e^A)_{ii}}{(e^{|A|})_{ii}}$$

Diaz-Diaz, Bartesaghi, and Estrada (2024). *Journal of Applied Mathematics and Computing*, 1–24.

Up to now, we have counted **closed walks**, to quantitatively measure **balance**.

Now, we will enumerate **open walks**, to quantitatively measure **effective alliances and enmities**.

Up to now, we have counted **closed walks**, to quantitatively measure **balance**.

Now, we will enumerate **open walks**, to quantitatively measure **effective alliances and enmities**.

Nodes 3 and 4 are effective
enemies (up to length 3)

Up to now, we have counted **closed walks**, to quantitatively measure **balance**.

Now, we will enumerate **open walks**, to quantitatively measure **effective alliances and enmities**.

Nodes 3 and 4 are effective
enemies (up to length 3)

Communicability matrix:

$$\Gamma_{ij} = \sum_{k=0}^{\infty} \frac{(A^k)_{ij}}{k!} = (e^A)_{ij}$$

The distance problem in signed graphs

Definition 11: a distance is a function d that satisfies the following axioms:

- 1) Non-negativity: $d(i,j) \geq 0$
- 2) Identity of indiscernibles: $d(i,j) = 0$ iff $i=j$
- 3) Symmetry: $d(i,j) = d(j,i)$
- 4) Triangle inequality: $d(i,j) + d(j,k) \geq d(i,k)$

The distance problem in signed graphs

Definition 11: a distance is a function d that satisfies the following axioms:

- 1) Non-negativity: $d(i,j) \geq 0$
- 2) Identity of indiscernibles: $d(i,j) = 0$ iff $i=j$
- 3) Symmetry: $d(i,j) = d(j,i)$
- 4) Triangle inequality: $d(i,j) + d(j,k) \geq d(i,k)$

How can we define
a well-defined distance
on a signed graph?

Example 12: minimum-weight distance in a signed graph:

- ~~1) Non-negativity~~
- ~~2) Identity of indiscernibles~~
- ~~3) Symmetry~~
- ~~4) Triangle inequality~~

The distance problem in signed graphs

Definition 11: a distance is a function d that satisfies the following axioms:

- 1) Non-negativity: $d(i,j) \geq 0$
- 2) Identity of indiscernibles: $d(i,j) = 0$ iff $i=j$
- 3) Symmetry: $d(i,j) = d(j,i)$
- 4) Triangle inequality: $d(i,j) + d(j,k) \geq d(i,k)$

How can we define
a well-defined distance
on a signed graph?

Example 13: communicability distance in a signed graph:

$$\xi_{ij} = \sqrt{\Gamma_{ii} + \Gamma_{jj} - 2\Gamma_{ij}}$$

Very central nodes increase
the distance

Effective enemies (negative comm)
increase the distance

The distance problem in signed graphs

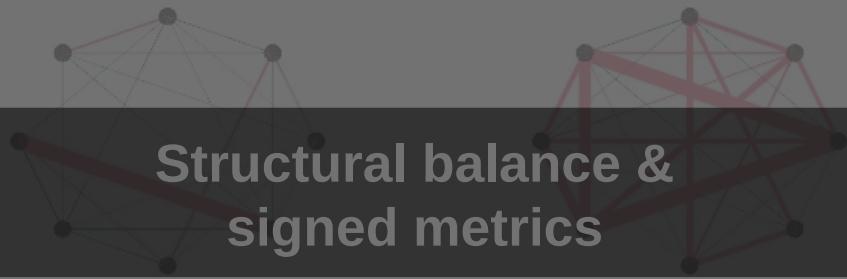
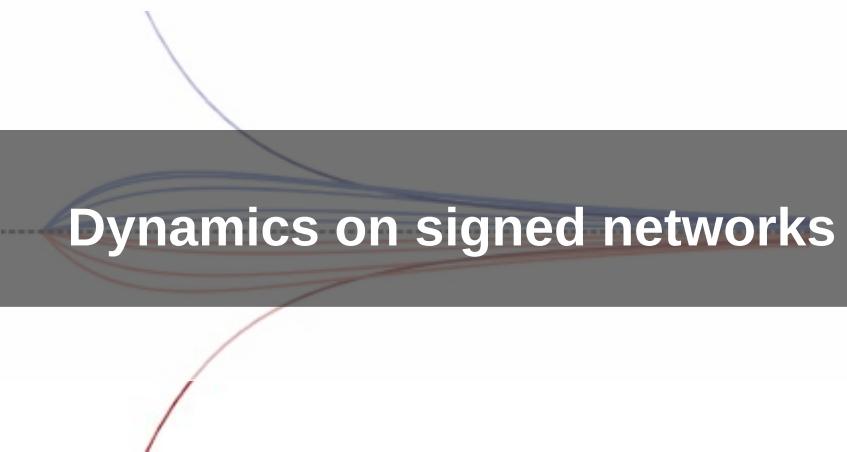
Definition 13: a distance is a function d that satisfies the following axioms:

- 1) Non-negativity: $d(i,j) \geq 0$
- 2) Identity of indiscernibles: $d(i,j) = 0$ iff $i=j$
- 3) Symmetry: $d(i,j) = d(j,i)$
- 4) Triangle inequality: $d(i,j) + d(j,k) \geq d(i,k)$

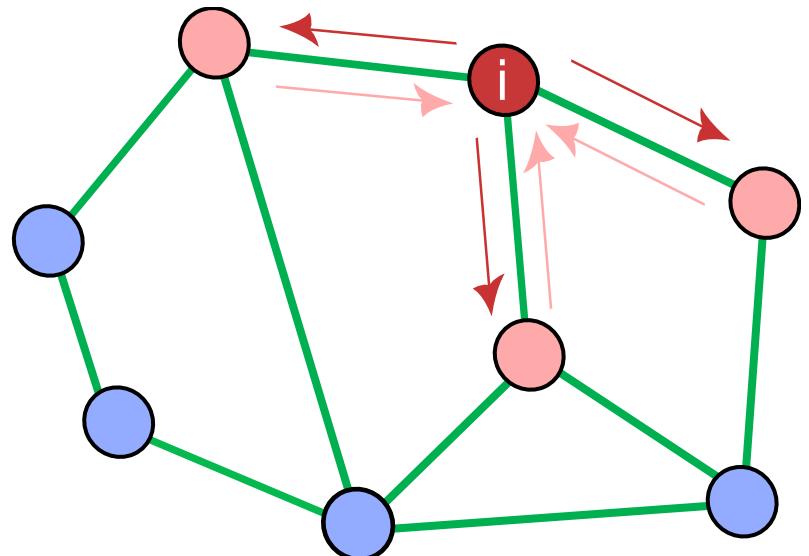
**ξ is a Euclidean distance,
even when the graph is
signed**

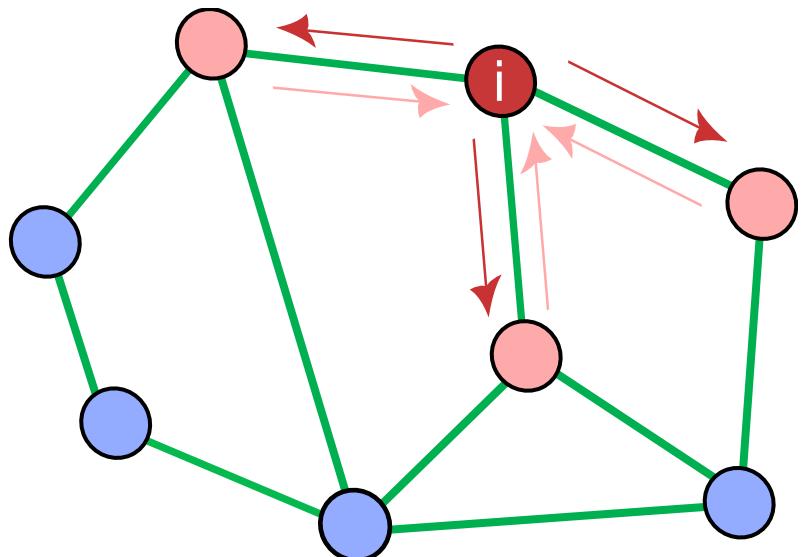
Example 13: communicability distance in a signed graph:

$$\xi_{ij} = \sqrt{\Gamma_{ii} + \Gamma_{jj} - 2\Gamma_{ij}}$$

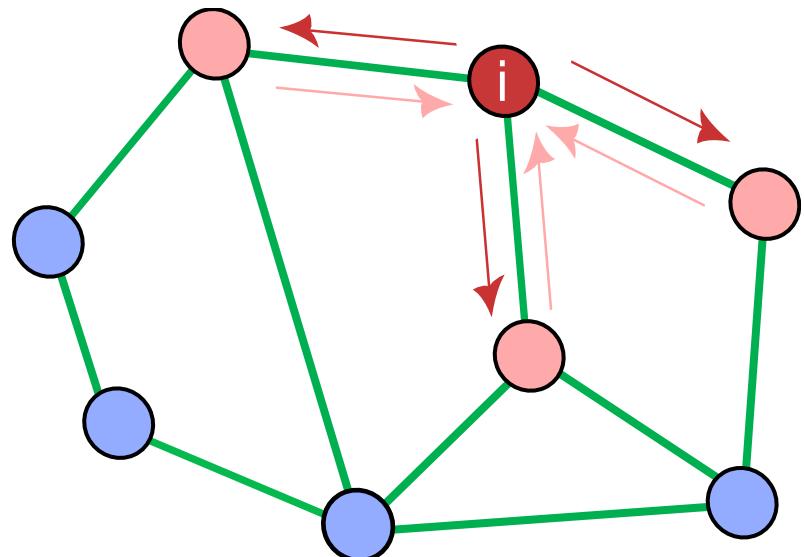


Diffusion in networks



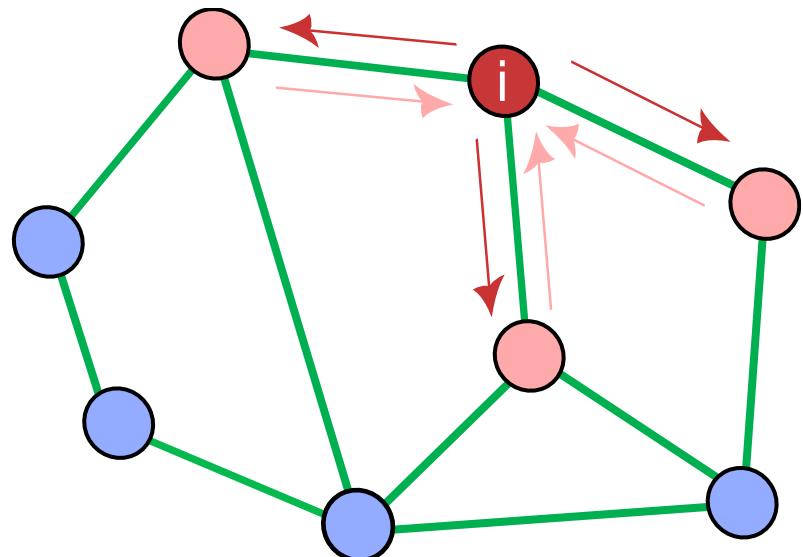


$$x_i(t+1) = x_i(t) - \sum_{j \leftarrow i} x_i(t) + \sum_{j \rightarrow i} x_j(t)$$



$$x_i(t+1) = x_i(t) - \sum_{j \leftarrow i} x_i(t) + \sum_{j \rightarrow i} x_j(t)$$

$$\dot{x}(t) = -(K - A)x(t)$$



$$x_i(t+1) = x_i(t) - \sum_{j \leftarrow i} x_i(t) + \sum_{j \rightarrow i} x_j(t)$$

$$\dot{x}(t) = -(K - A)x(t)$$

$$\dot{x}(t) = -Lx(t)$$

**Diffusion equation
for graphs**

Definition 14: the **Laplacian operator** L of an unsigned network is given by:

$$L_{ij} = \begin{cases} k_i & \text{if } i = j \\ -A_{ij} & \text{otherwise} \end{cases} \quad \text{where } k_i = \sum_j A_{ij}$$

Definition 15: the **Laplacian operator** L of a signed network is given by:

$$L_{ij} = \begin{cases} k_i & \text{if } i = j \\ -A_{ij} & \text{otherwise} \end{cases} \quad \text{where } k_i = \sum_j |A_{ij}|$$

Definition 15: the **Laplacian operator** L of a signed network is given by:

$$L_{ij} = \begin{cases} k_i & \text{if } i = j \\ -A_{ij} & \text{otherwise} \end{cases} \quad \text{where } k_i = \sum_j |A_{ij}|$$

Theorem 16: the Laplacian operator of a signed graph is a **positive semidefinite**. Moreover, L has a null eigenvalue if and only if the graph is balanced.

Linear dynamics (**diffusion**):

$$\dot{x}(t) = -Lx(t) \quad \Longrightarrow \quad x(t) = e^{-Lt}x_0$$

Linear dynamics (**diffusion**):

$$\dot{x}(t) = -Lx(t) \quad \Longrightarrow \quad x(t) = e^{-Lt}x_0$$

Eigenmode expansion:

$$x_i(t) = \sum_k e^{-\lambda_k t} \psi_k(i) \psi_k(j) x_0(j)$$

Linear dynamics (**diffusion**):

$$\dot{x}(t) = -Lx(t) \quad \Longrightarrow \quad x(t) = e^{-Lt}x_0$$

Eigenmode expansion:

$$x_i(t) = \sum_k e^{-\lambda_k t} \psi_k(i) \psi_k(j) x_0(j)$$

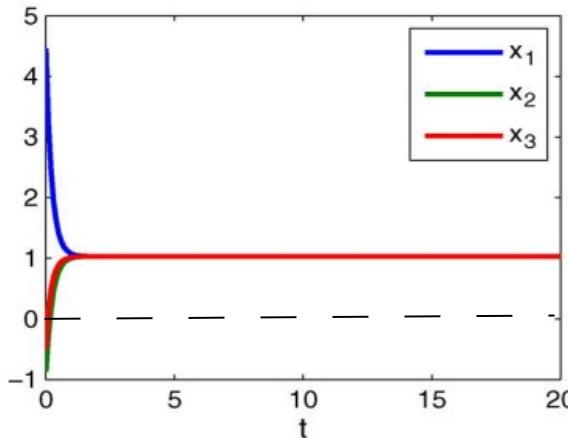
In the stationary state:

$$\lim_{t \rightarrow \infty} x_i(t) = \begin{cases} 0 & \text{if } \lambda_0 > 0 \\ C\psi_0 & \text{otherwise} \end{cases} \quad (\psi_0)_i = \begin{cases} +1 & \text{if } i \in G_1 \\ -1 & \text{if } i \in G_2 \end{cases}$$

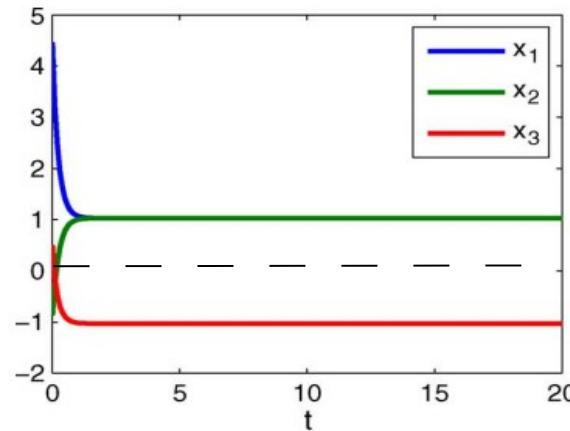
Theorem 17: the stationary state of a diffusive process on a signed network depends on the structural balance of the network. In particular, the stationary state is:

- **Consensus** if the network is unsigned.
- **Agreed dissensus** if the network is balanced.
- **Absence of opinions** if the network is unbalanced.

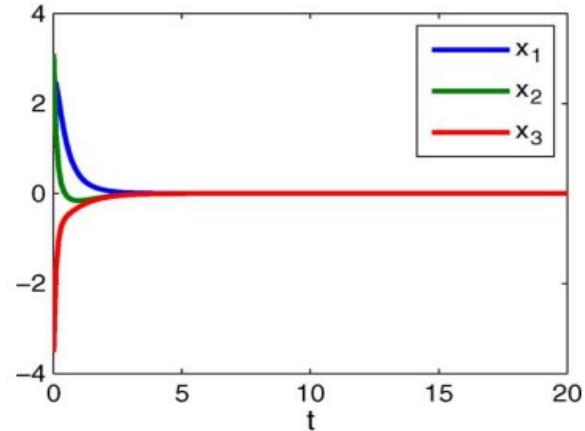
Consensus



Agreed dissensus

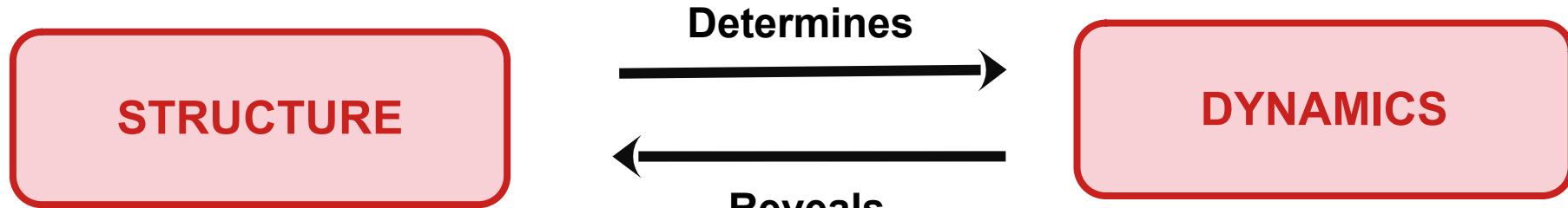


Absence of opinions



Theorem 17: the stationary state of a diffusive process on a signed network depends on the structural balance of the network. In particular, the stationary state is:

- **Consensus** if the network is unsigned.
- **Agreed dissensus** if the network is balanced.
- **Absence of opinions** if the network is unbalanced.



Mathematics of signed graphs:

- Thomas Zaslavsky. "Signed Graphs". *Discrete Applied Mathematics* 4 (1982), pages 47–74.
- Thomas Zaslavsky. Matrices in the Theory of Signed Simple Graphs. 2013. arXiv: 1303.3083 [math].

Structural balance:

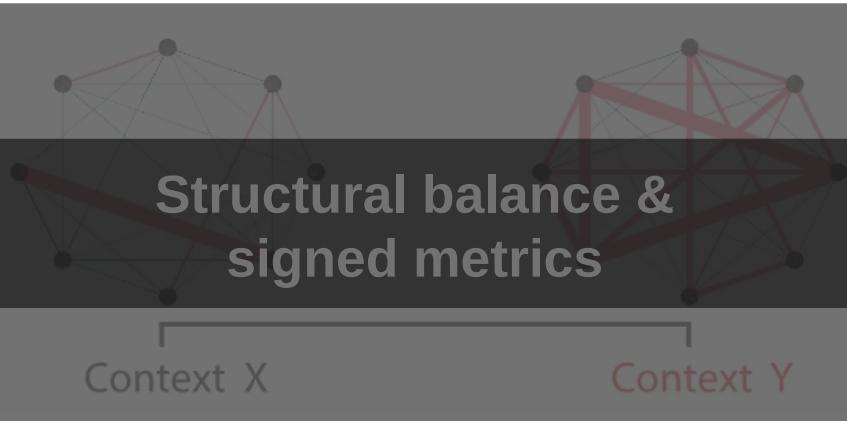
- Frank Harary. "On the Notion of Balance of a Signed Graph". *Michigan Mathematical Journal* 2 (1953), pages 143–146
- Dorwin Cartwright and Frank Harary. "Structural Balance: A Generalization of Heider's Theory." *Psychological Review* 63.5 (1956), page 277.

Balance indices:

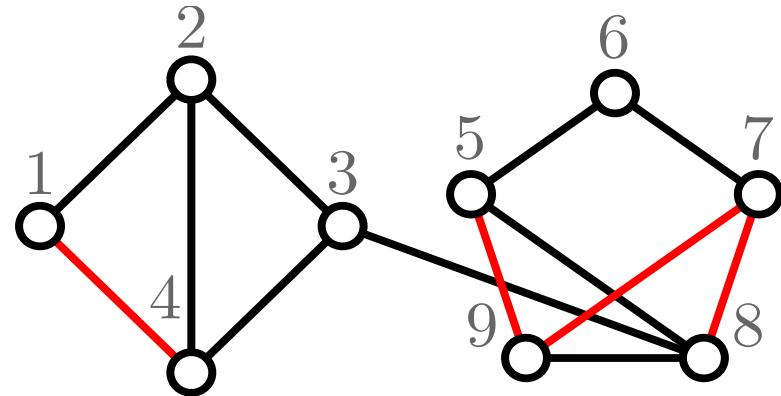
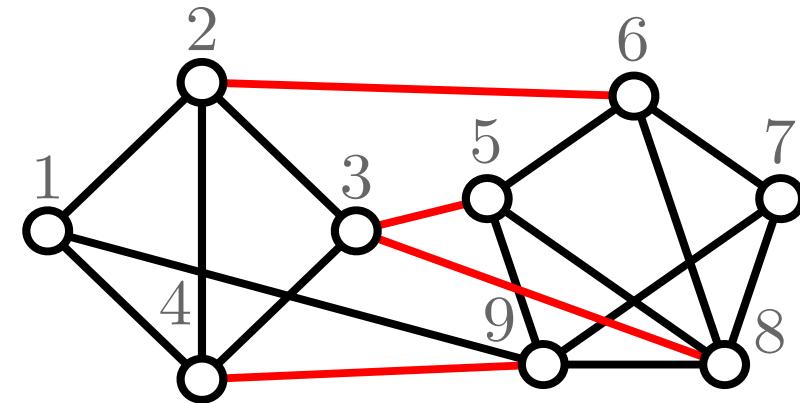
- Ernesto Estrada and Michele Benzi. "Walk-Based Measure of Balance in Signed Networks: Detecting Lack of Balance in Social Networks". *Physical Review E* 90.4 (2014), page 042802.

Laplacian and dynamics:

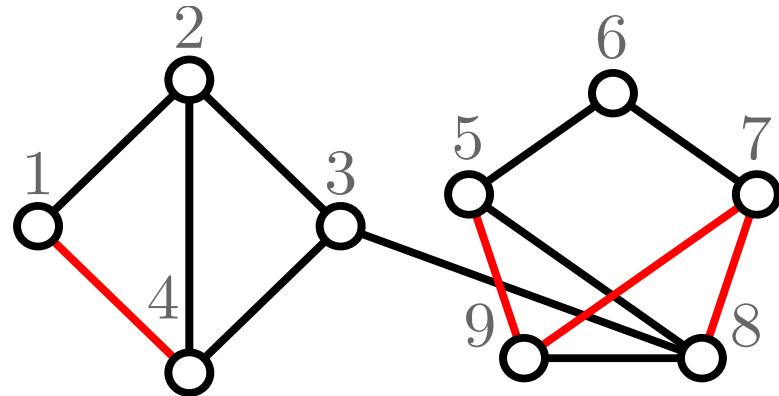
- Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner, Ernesto W De Luca, and Sahin Albayrak. "Spectral analysis of signed graphs for clustering, prediction and visualization". *Proceedings of the 2010 SIAM international conference on data mining*. SIAM. 2010, pages 559–570.
- Claudio Altafini. "Consensus problems on networks with antagonistic interactions". *IEEE transactions on automatic control* 58.4 (2012), pages 935–946.



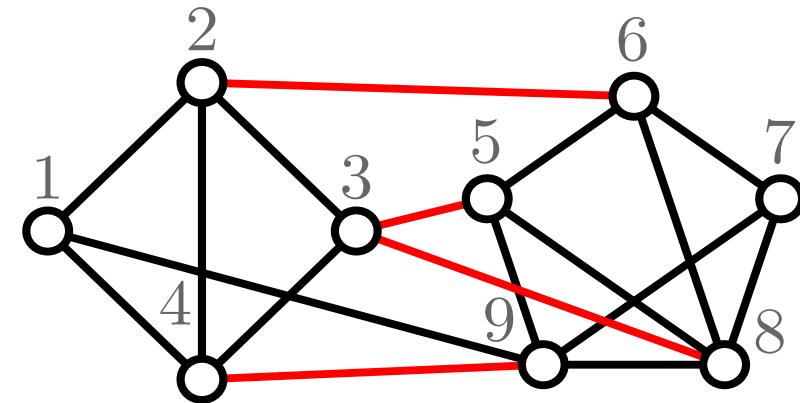
Q: which signed network has mesoscale structure?



Q: which signed network has mesoscale structure?

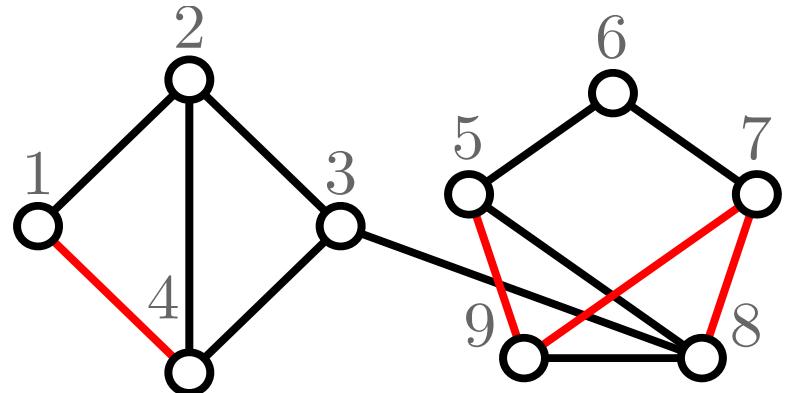
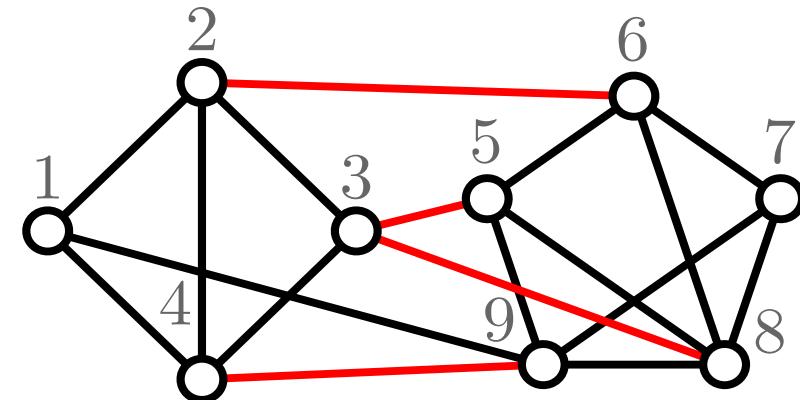


COMMUNITIES



FACTIONS

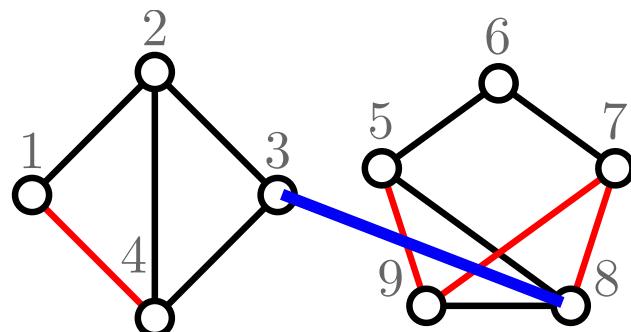
Q: which signed network has mesoscale structure?



Definition (Cut set)

For a partition $V = U_1 \cup U_2$, the cut-set $C(U_1, U_2)$ is the set of edges with one endpoint in U_1 and the other in U_2 .

The edge connectivity $\kappa_e(G)$ is the size of a smallest cut-set of G .

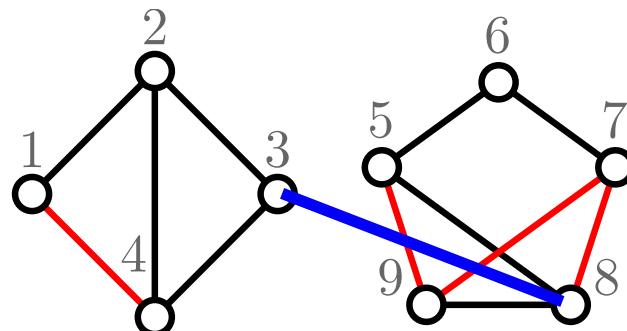


Communities have small edge connectivity

Definition (Cut set)

For a partition $V = U_1 \cup U_2$, the cut-set $C(U_1, U_2)$ is the set of edges with one endpoint in U_1 and the other in U_2 .

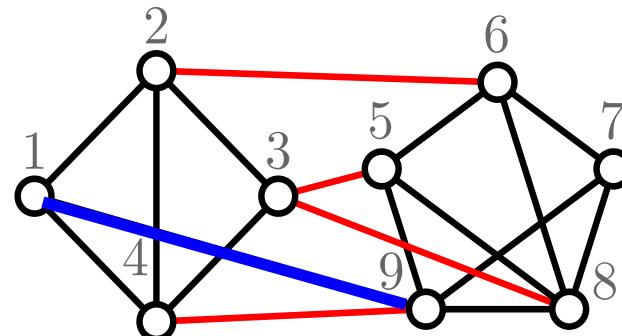
The edge connectivity $\kappa_e(G)$ is the size of a smallest cut-set of G .



Communities have small edge connectivity

Definition (Frustration set)

A frustration set is a set of edges whose removal makes the signed graph balanced. The frustration index $\phi(G)$ is the size of a smallest frustration set of G .

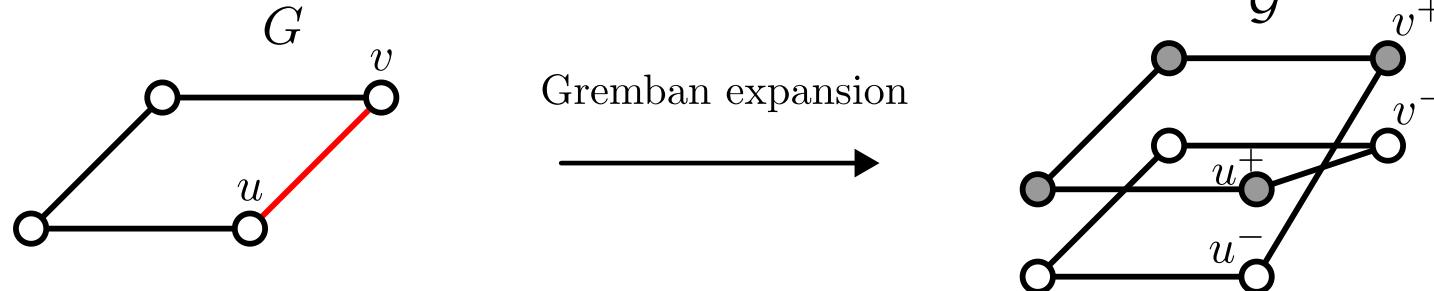


Factions have small frustration index

Definition (Gremban expansion)

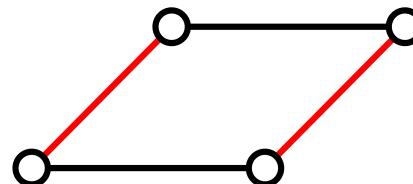
The *Gremban expansion* of a signed graph G is the unsigned graph \mathcal{G} with $2n$ vertices and $2m$ edges, defined as follows:

- Each node v gets mapped to two polarities v^+ and v^- .
- Positive links (u, v) get mapped to (u^+, v^+) and (u^-, v^-) .
- Negative links (u, v) get mapped to (u^+, v^-) and (u^-, v^+) .

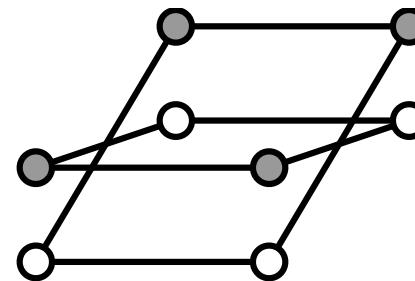


Theorem (1)

A connected signed graph is balanced iff its Gremban expansion is disconnected.

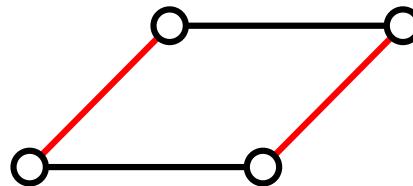


Gremban expansion

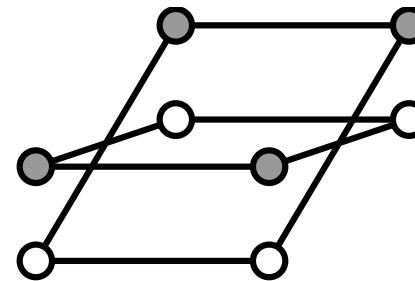
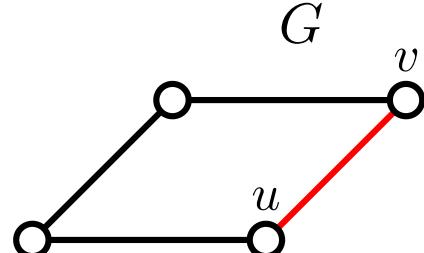


Theorem (1)

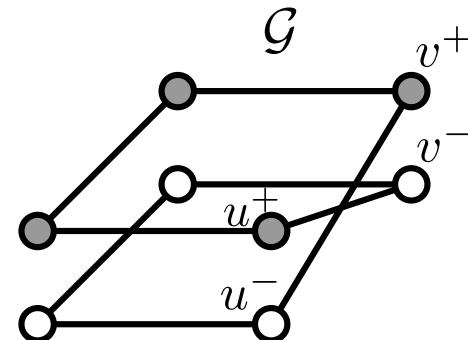
A connected signed graph is balanced iff its Gremban expansion is disconnected.



Gremban expansion



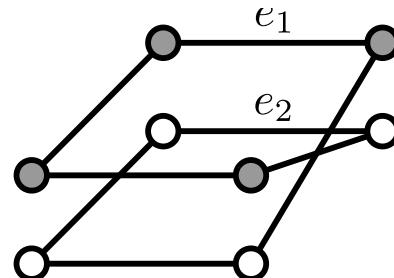
Gremban expansion



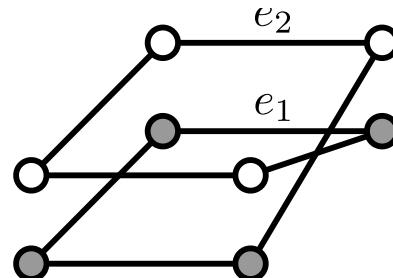
Definition (Gremban involution)

The *Gremban involution* η swaps the two polarities of every node:

$$\eta(v^+) = v^-, \quad \eta(v^-) = v^+.$$



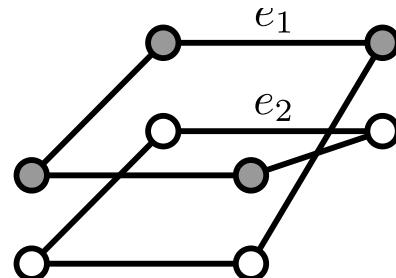
Gremban involution η



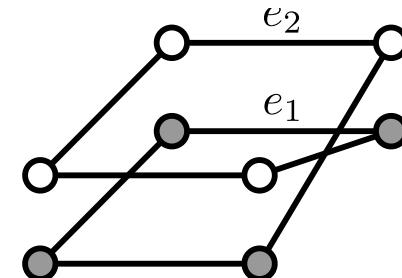
Definition (Gremban involution)

The *Gremban involution* η swaps the two polarities of every node:

$$\eta(v^+) = v^-, \quad \eta(v^-) = v^+.$$



Greban involution η



Definition (Gremban symmetry)

- A set (of nodes, edges, or a subgraph) is *Gremban-symmetric* if it is invariant under the involution η , i.e.

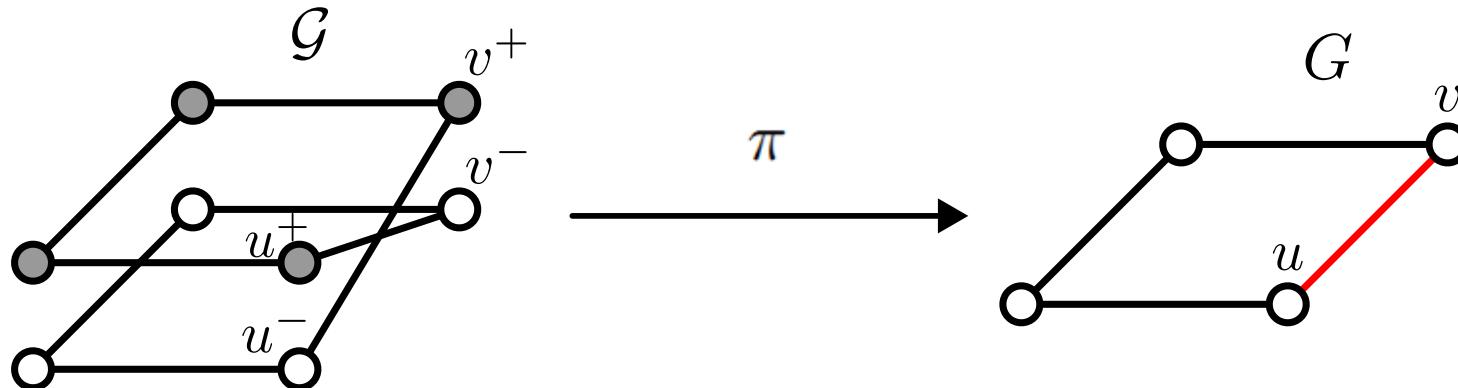
$$\eta(\mathcal{X}) = \mathcal{X}.$$

- A bipartition $(\mathcal{U}_1, \mathcal{U}_2)$ of $V(\mathcal{G})$ is *Gremban-symmetric* if $\eta(\mathcal{U}_1) = \mathcal{U}_1$ or $\eta(\mathcal{U}_1) = \mathcal{U}_2$.

Definition (Projection map)

The *projection* π sends each polarity back to its node:

$$\pi(v^+) = \pi(v^-) = v.$$



So far, we have:

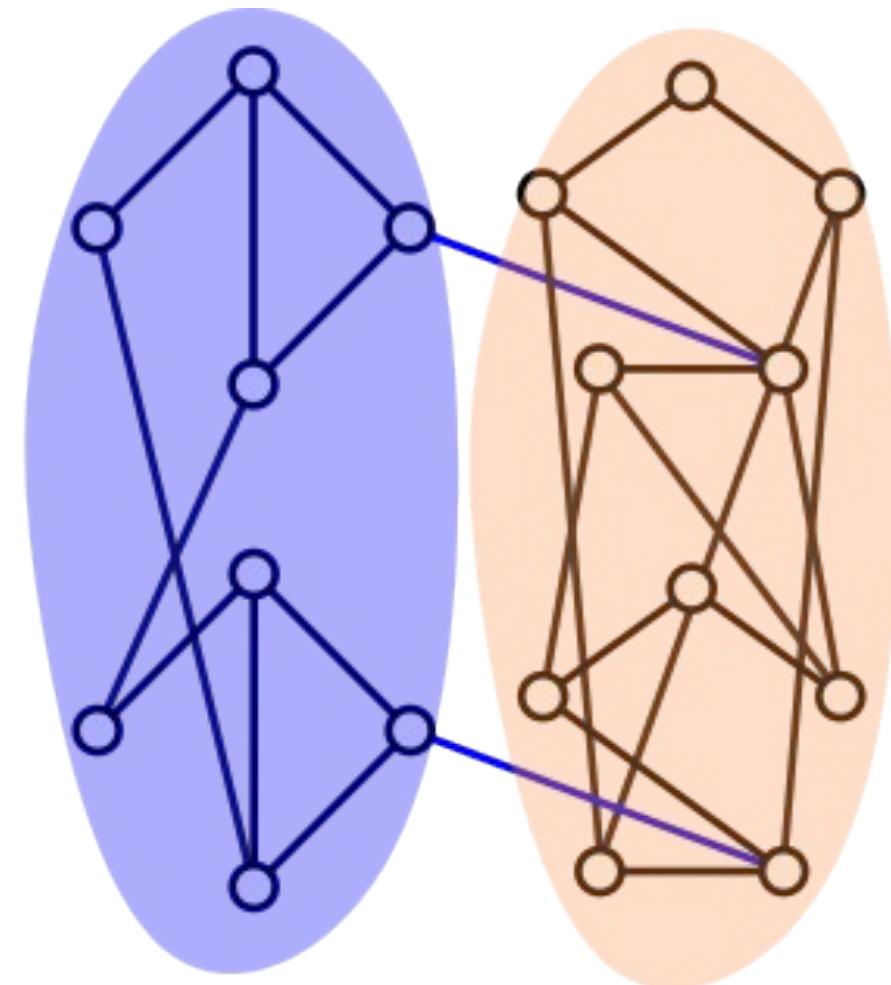
- ① A way to operationalize communities and factions (small **cut-sets** and small **frustration sets**).
- ② An operation, the **Gremban expansion**, that maps a signed graph to an unsigned one.
- ③ A notion of **symmetry** in the expanded space (invariance under the **involution** η).
- ④ A way of **projecting** back to the original space, but only for Gremban-symmetric objects.

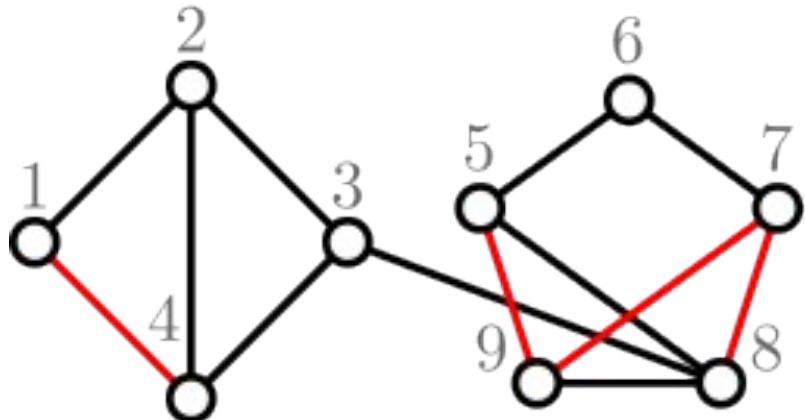
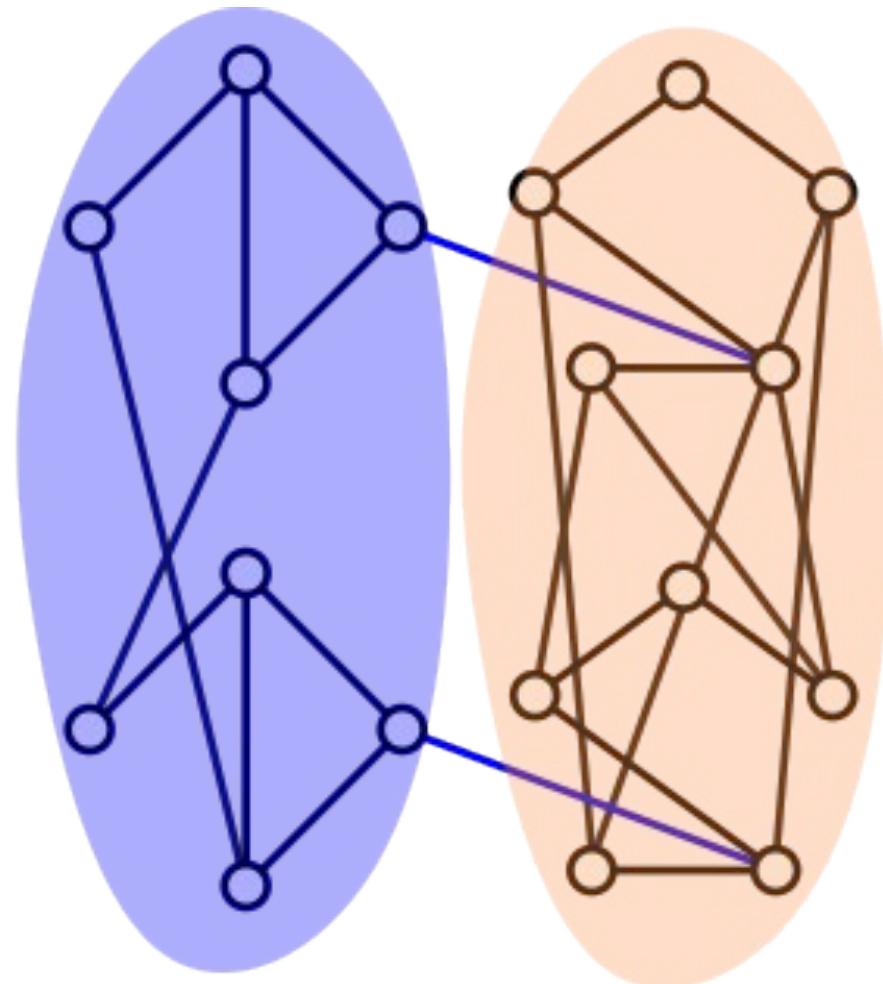
**What types of structures structure in
the expanded space correspond to
communities and factions?**

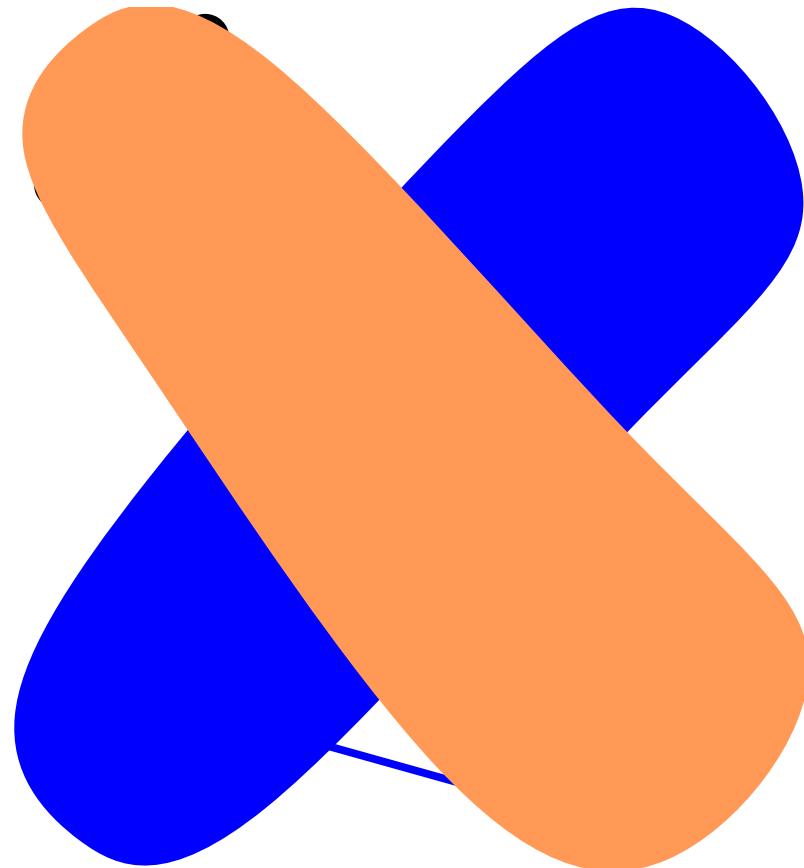
Theorem (3)

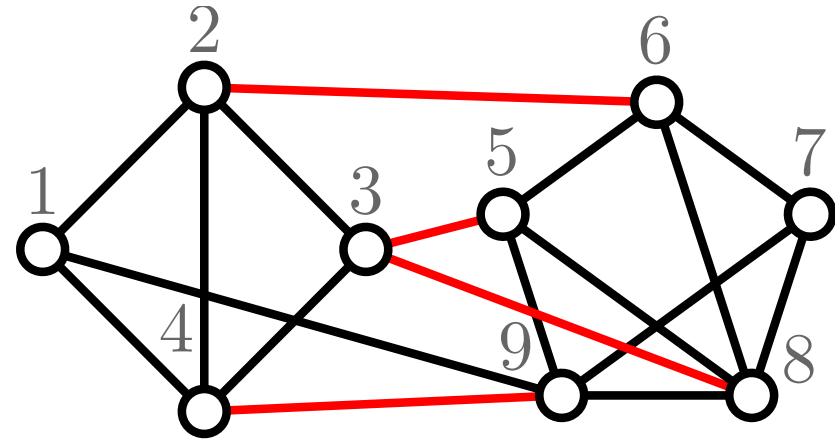
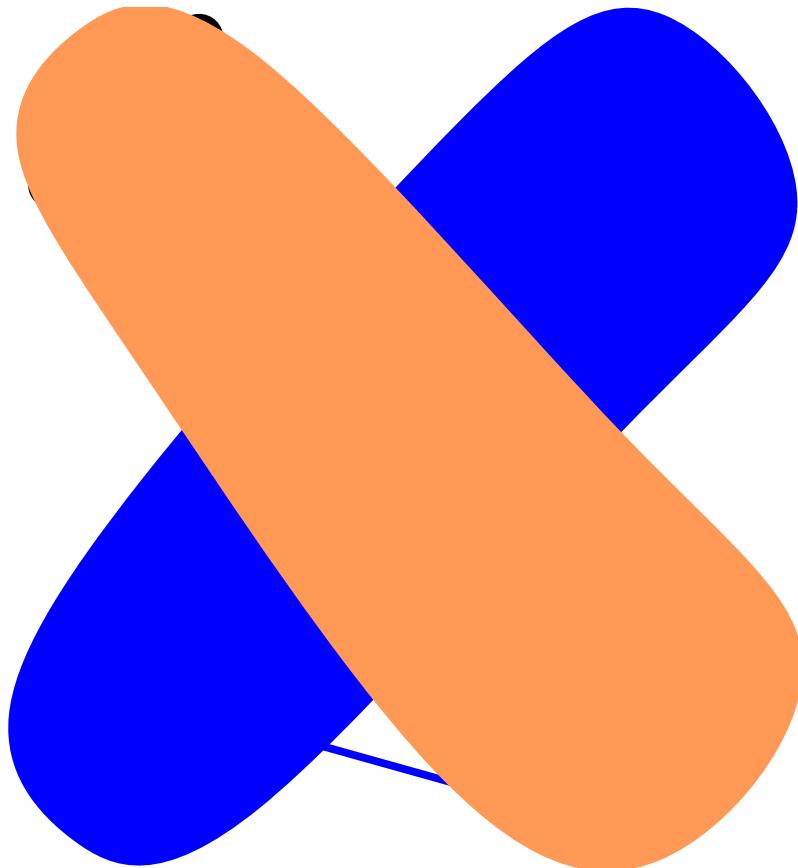
Every cut or frustration set in G lifts to a symmetric cut in \mathcal{G} . Conversely, every Gremban-symmetric bipartition $(\mathcal{U}_1, \mathcal{U}_2)$ of \mathcal{G} projects to:

$$\begin{cases} \text{cut-sets in } G & \text{if } \eta(\mathcal{U}_1) = \mathcal{U}_1, \\ \text{frustration sets in } G & \text{if } \eta(\mathcal{U}_1) = \mathcal{U}_2. \end{cases}$$



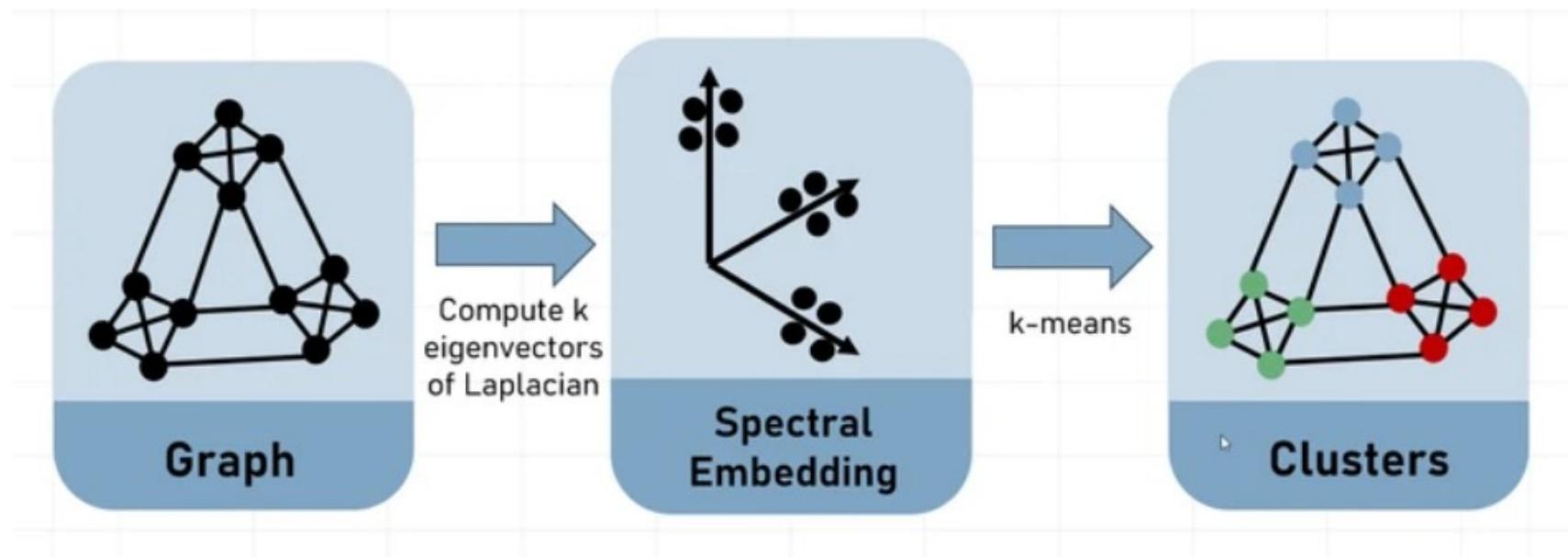






Spectral Clustering Principle:

Low eigenvectors of the Laplacian have similar values on well-connected nodes → **eigenvectors of L reveal community structure**



- Ulrike von Luxburg. A tutorial on spectral clustering. *Statistics and Computing*, 17(4):395–416, 2007.
- Image: Macgregor, Peter. "Fast and simple spectral clustering in theory and practice." *Advances in Neural Information Processing Systems* 36 (2023): 34410-34425.

① Signed adjacency matrix.

$$A = A^+ - A^-$$

① Signed adjacency matrix.

$$A = A^+ - A^-$$

② Gremban-expanded adjacency
matrix (**non-negative!**).

$$\mathcal{A} = \begin{pmatrix} A^+ & A^- \\ A^- & A^+ \end{pmatrix}$$

① Signed adjacency matrix.

$$A = A^+ - A^-$$

② Gremban-expanded adjacency matrix (**non-negative!**).

$$\mathcal{A} = \begin{pmatrix} A^+ & A^- \\ A^- & A^+ \end{pmatrix}$$

③ Laplacian of the expanded adjacency matrix.

$$\mathcal{L} = \begin{pmatrix} K - A^+ & -A^- \\ -A^- & K - A^+ \end{pmatrix}$$

Theorem (4)

Let $L = K - A$ be the signed Laplacian and $\bar{L} = K - |A|$ the unsigned Laplacian. Then, $\mathcal{L} \sim \bar{L} \oplus L$.

$$\mathcal{L} = \mathcal{U} \begin{pmatrix} \bar{L} & 0 \\ 0 & L \end{pmatrix} \mathcal{U}^\top$$

- $(\lambda, x) \in L \Rightarrow (\lambda, (x, -x)) \in \mathcal{L}$,
- $(\mu, y) \in \bar{L} \Rightarrow (\mu, (y, y)) \in \mathcal{L}$.

Theorem (4)

Let $L = K - A$ be the *signed Laplacian* and $\bar{L} = K - |A|$ the *unsigned Laplacian*. Then, $\mathcal{L} \sim \bar{L} \oplus L$.

$$\mathcal{L} = \mathcal{U} \begin{pmatrix} \bar{L} & 0 \\ 0 & L \end{pmatrix} \mathcal{U}^\top$$

- $(\lambda, x) \in L \Rightarrow (\lambda, (x, -x)) \in \mathcal{L}$,
- $(\mu, y) \in \bar{L} \Rightarrow (\mu, (y, y)) \in \mathcal{L}$.

Communities \rightarrow Unsigned topology \rightarrow Unsigned Laplacian \rightarrow Symmetric eigenvectors
 \rightarrow Gremban-symmetric node partitions

Factions \rightarrow Signed topology \rightarrow Signed Laplacian \rightarrow Antisymmetric eigenvectors
 \rightarrow Gremban-antisymmetric node partitions

Algorithm:

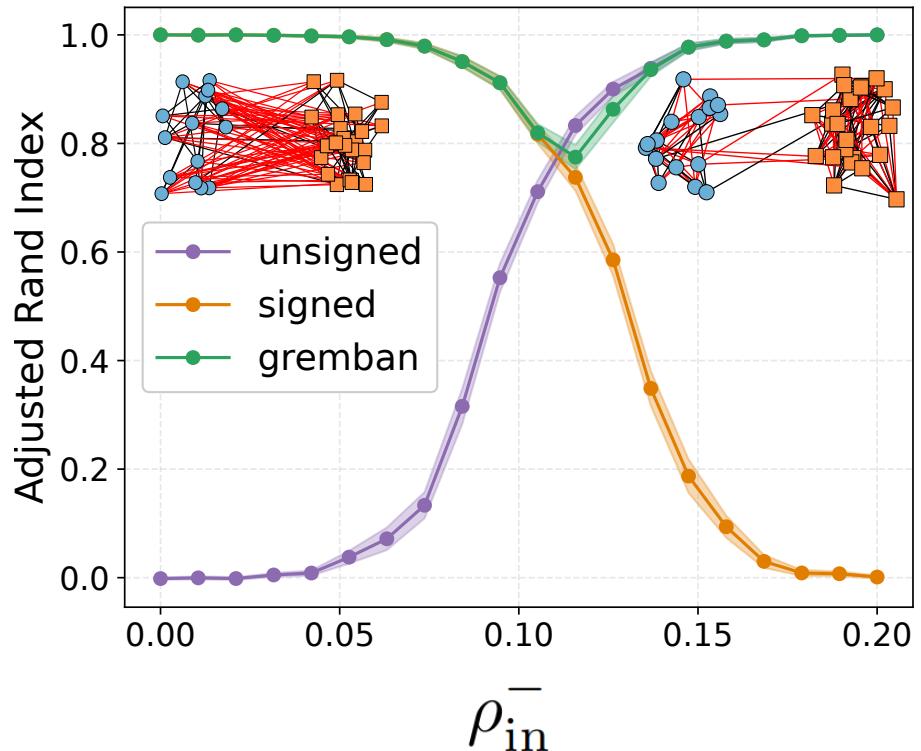
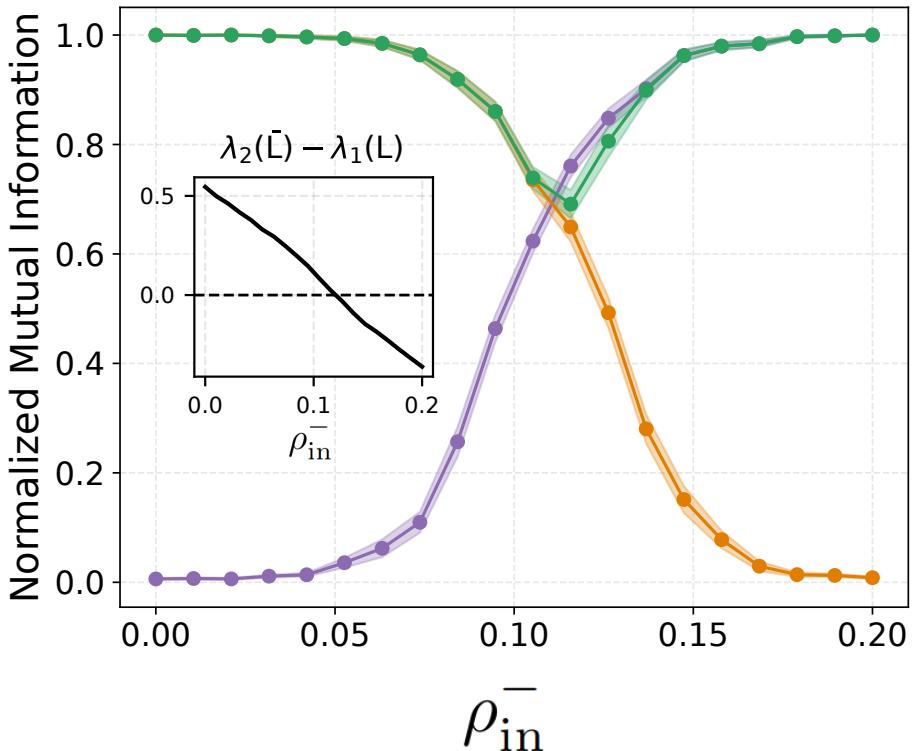
- ① Expand signed graph $G \mapsto \mathcal{G}$.
- ② Compute Laplacian \mathcal{L} of \mathcal{G} .
- ③ Extract first non-constant $k - 1$ eigenvectors $\{\psi_2, \dots, \psi_k\}$.
- ④ Embed nodes in \mathbb{R}^{k-1} and run k -means.
- ⑤ Interpret clusters:
 - Symmetric \rightarrow communities
 - Antisymmetric \rightarrow factions inside communities

Algorithm:

- ① Expand signed graph $G \mapsto \mathcal{G}$.
- ② Compute Laplacian \mathcal{L} of \mathcal{G} .
- ③ Extract first non-constant $k - 1$ eigenvectors $\{\psi_2, \dots, \psi_k\}$.
- ④ Embed nodes in \mathbb{R}^{k-1} and run k -means.
- ⑤ Interpret clusters:
 - Symmetric \rightarrow communities
 - Antisymmetric \rightarrow factions inside communities

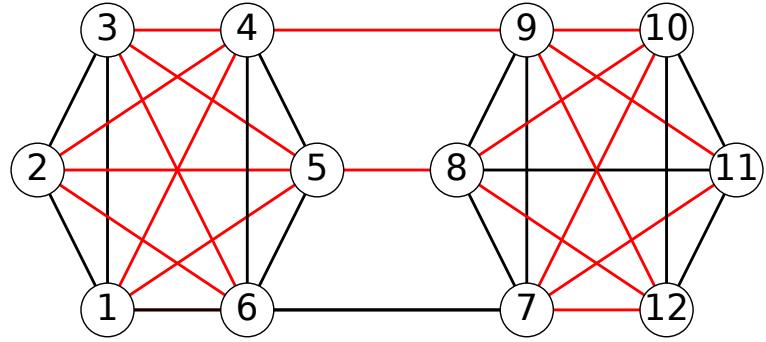
This detects **both communities and factions** and disentangles them in a principled way!

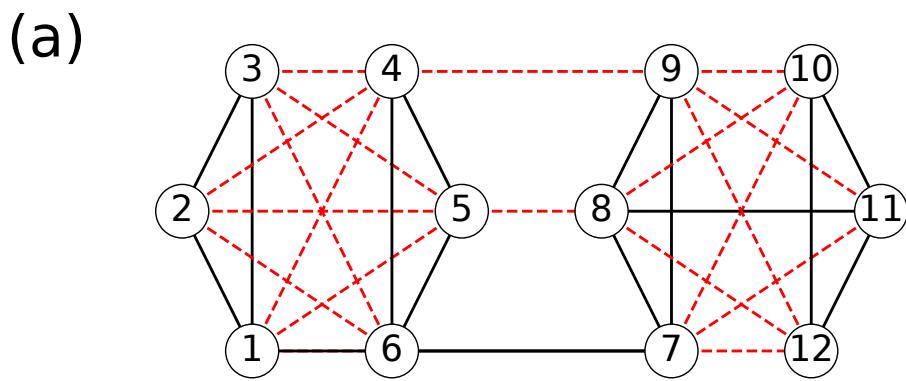
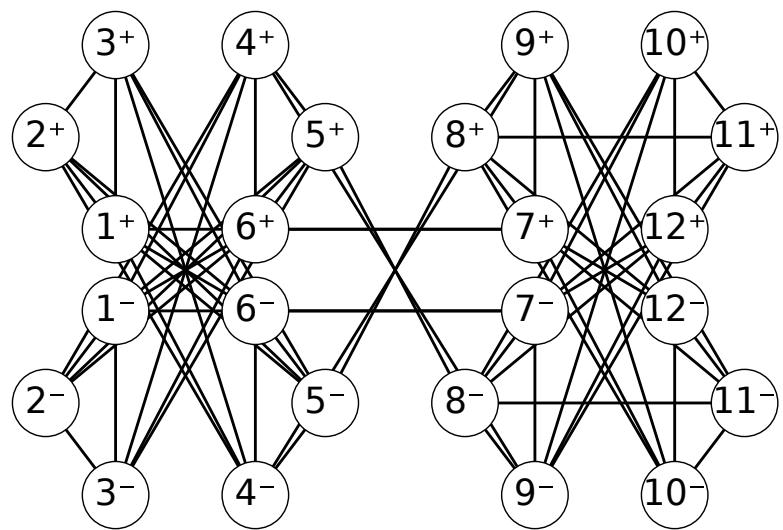
Spectral clustering in the Gremban expansion

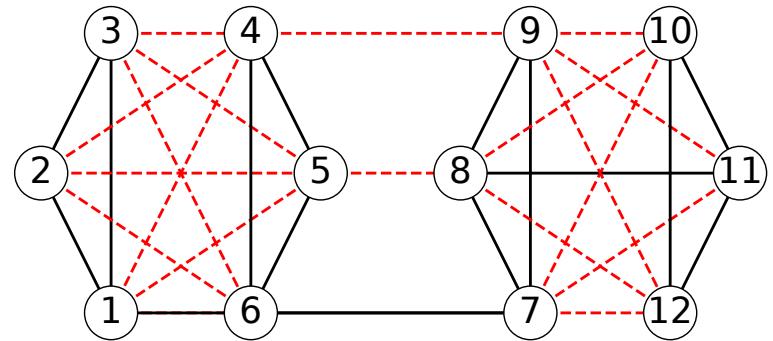
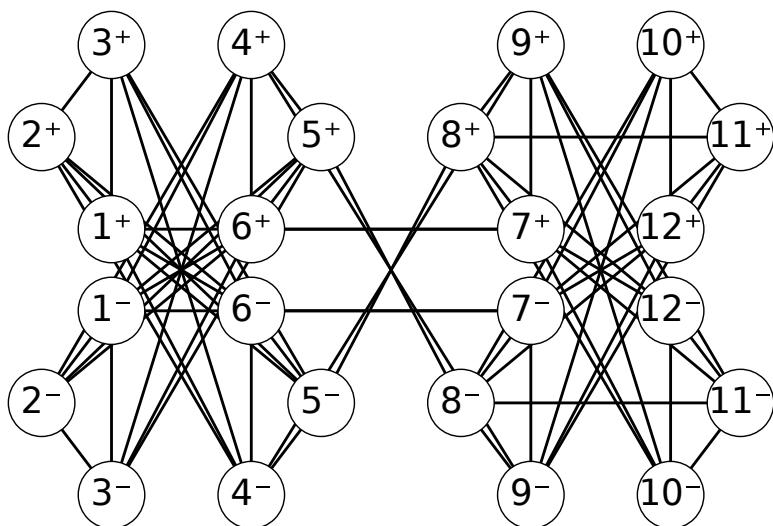
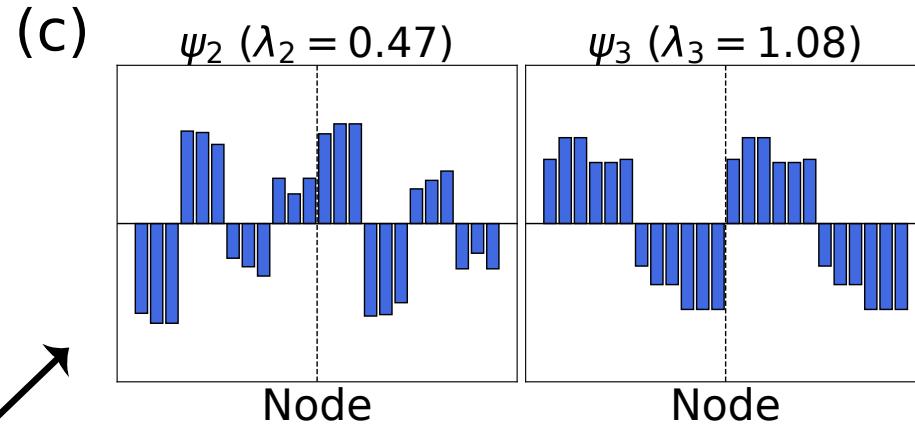


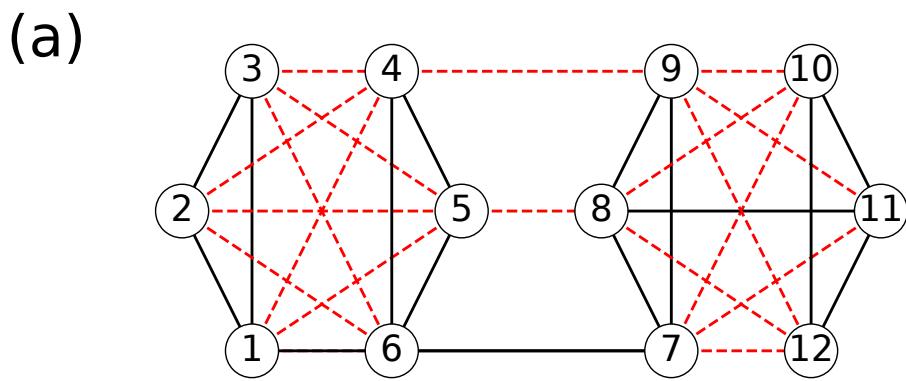
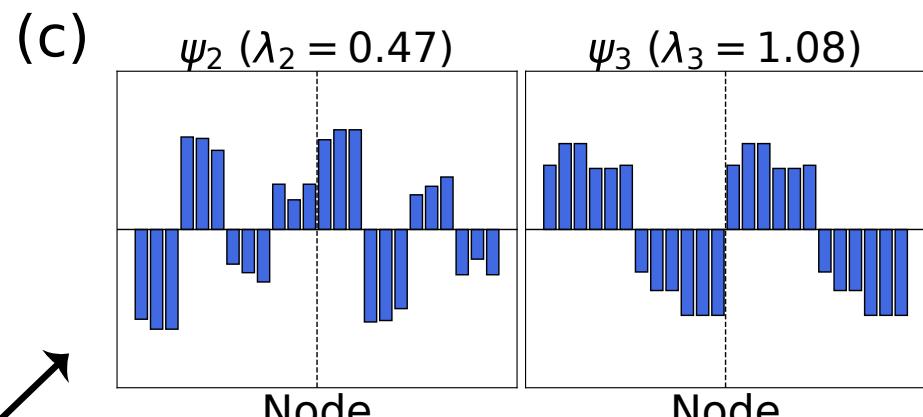
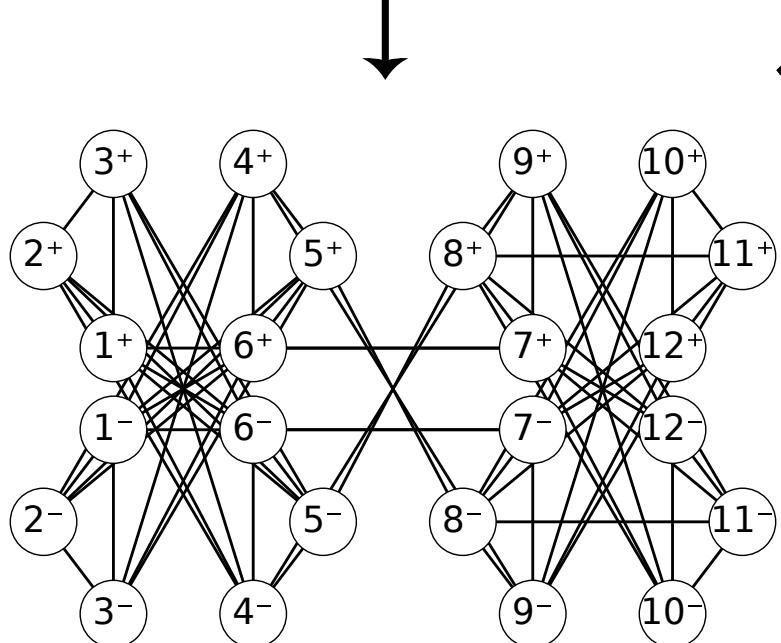
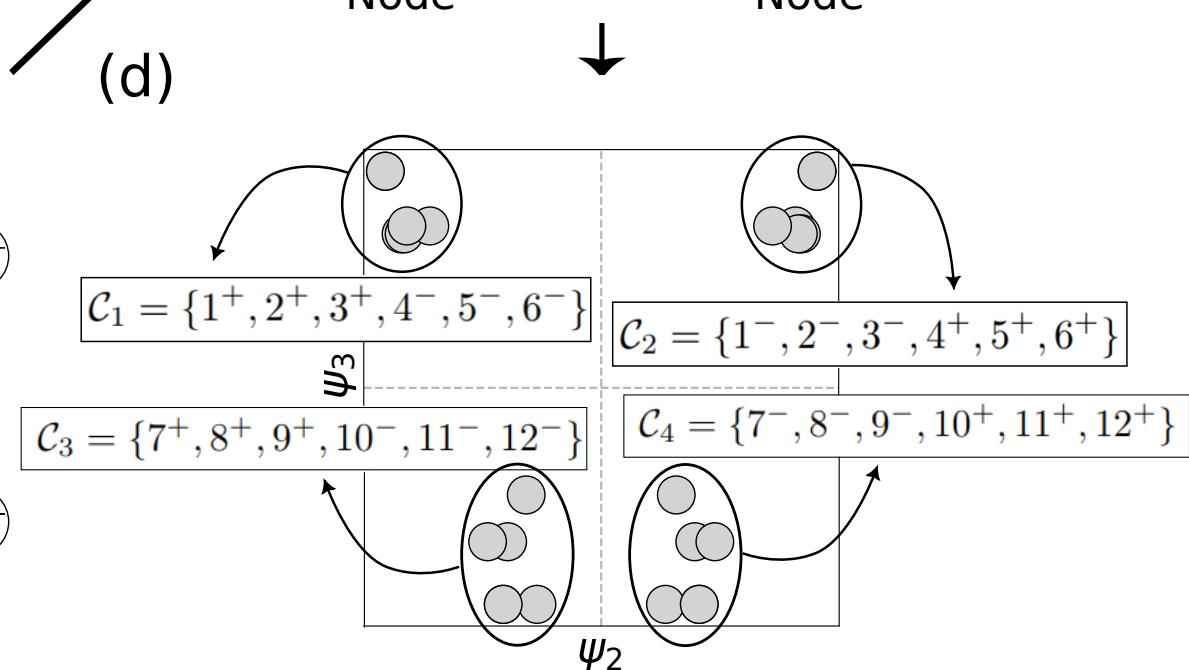
- Diaz-Diaz, Fernando, Karel Devriendt, and Renaud Lambiotte. "Gremban Expansion for Signed Networks: Algebraic and Combinatorial Foundations for Community-Faction Detection." arXiv preprint arXiv:2509.14193 (2025).
- Fox, Manteuffel, and Sanders. Numerical methods for Gremban's expansion of signed graphs. SIAM Journal on Scientific Computing, 39(5):S945–S968, 2017

(a)

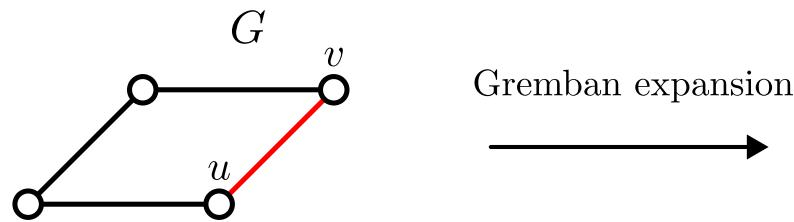








- Signed graphs can show two mesoscale structures: **communities and factions**.
- Using the **Gremban expansion**, we map a signed graph to an unsigned one without losing sign information.
- Communities in the expanded graph map back to **communities or factions** in the original, depending on the **symmetry** of the partition.



Results available in:

arXiv > cs > arXiv:2509.14193

Computer Science > Discrete Mathematics

[Submitted on 17 Sep 2025]

Gremban Expansion for Signed Networks: Algebraic and Combinatorial Foundations for Community-Faction Detection

Fernando Diaz-Diaz, Karel Devriendt, Renaud Lambiotte

Thank you for your attention

Contact: fddiaz@math.uc3m.es

Greman expansion:

Signet review:

Signed Networks: theory, methods, and applications

Fernando Diaz-Diaz^{1,2}, Elena Candellone^{3,4}, Miguel A. González-Casado¹, Emma Fraxanet⁵, Antoine Vendeville^{6,7,8}, Irene Ferri^{9,10,11}, and Andreia Sofia Teixeira^{12,13}

¹Universidad Carlos III de Madrid, Departamento de Matemáticas, Grupo Interdisciplinar de Sistemas Complejos, 28911 Leganés, Spain

²Institute of Cross-Disciplinary Physics and Complex Systems, IFISC (UIB-CSIC), 07122 Palma de Mallorca, Spain

³Department of Methodology and Statistics, Utrecht University, Utrecht, Netherlands

⁴Centre for Complex Systems Studies, Utrecht University, Utrecht, Netherlands

⁵Department of Engineering, Universitat Pompeu Fabra, Barcelona 08018, Spain

⁶Sciences Po médialab, 75007 Paris, France

⁷Complex Systems Institute of Paris Ile-de-France CNRS, 75013 Paris, France

⁸Learning Planet Institute, Learning Transitions unit, CY Cergy Paris University, 75004 Paris, France

⁹Departament de Física de la Matèria Condensada, Universitat de Barcelona (UB), c. Martí i Franquès, 1, 08028 Barcelona, Spain

¹⁰Institut de Recerca en Sistemes Complexos (UBICS), Universitat de Barcelona (UB), Barcelona, Spain

¹¹The Roux Institute, Network Science Institute, Northeastern University, 04101 Portland, ME USA

¹²BRAN Lab, Network Science Institute, Northeastern University London, London E1W 1LP, United Kingdom

¹³LASIGE, Departamento de Informática, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal