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Sighed networks are the mathematical representation of

antagonism within complex systems

Image credit: Fraxanet et al. (2024) "Unpacking polarization: Antagonism and alignment in signed networks of online interaction." PNAS Nexus 3.12 276.
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}' dynamic, anticorrelated functional networks
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Images: Gava et al, Science 385.6713 1120-1127; Babul and Lambiotte, Comm. Phys. 7.1, 8;
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Structural balance &
sighed metrics




Signed networks ISC ucdm

Mathematical representation of a signed network

Definition 1: a signed network is a triple G = (V,E,o), where V is the set of nodes, E is the set of edges,
and o : E — {+1,-1} is a function that assigns a sign (+ or -) to each edge.

Zaslavsky, T. (1982). “Signed graphs”. Discrete Applied Mathematics 4, 47-74.
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Mathematical representation of a sighed network

Definition 1: a signed network is a triple G = (V,E,o), where V is the set of nodes, E is the set of edges,
and o : E — {+1,-1} is a function that assigns a sign (+ or -) to each edge.

Definition 2: the adjacency matrix A of a signed network is a square matrix with elements Aij = o(e)
when e=(i,j), and zero otherwise.

[ =] =)

—=1 0 0 1
i =L U 0 1
=1 1 1 0

Zaslavsky, T. (1982). “Signed graphs”. Discrete Applied Mathematics 4, 47-74.
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The walk lemma for signed networks

Definition 3: a walk is an ordered sequence of (not necessarily different) edges, where consecutive
edges are incident to the same node. The sign of a walk is the product of the signs of its edges.

Zaslavsky, T. (1982). “Signed graphs”. Discrete Applied Mathematics 4, 47-74.
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The walk lemma for signed networks

Definition 3: a walk is an ordered sequence of (not necessarily different) edges, where consecutive
edges are incident to the same node. The sign of a walk is the product of the signs of its edges.

Lemma 4 (walk lemma): the (i,j)th element of the k-th power of the adjacency matrix, (Ak);, counts the
difference between the number of positive walks and the number of negative walks of length k between
nodes i and .

Zaslavsky, T. (1982). “Signed graphs”. Discrete Applied Mathematics 4, 47-74.
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The walk lemma for signed networks

Definition 3: a walk is an ordered sequence of (not necessarily different) edges, where consecutive
edges are incident to the same node. The sign of a walk is the product of the signs of its edges.

Lemma 4 (walk lemma): the (i,j)th element of the k-th power of the adjacency matrix, (Ak);, counts the
difference between the number of positive walks and the number of negative walks of length k between
nodes i and .

Wy = {e12, €24, €43}

4 -5 -5 =5
5 9 9 5 Wy = {612,821,613}
s |-
A® = 5 9 9 5 W3 = {e14,€41,€13}
5 5 5 4 Wy = {e13, €34, €43}

W5 = {e13, €31, €13}

Zaslavsky, T. (1982). “Signed graphs”. Discrete Applied Mathematics 4, 47-74.
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The walk lemma for signed networks

Definition 3: a walk is an ordered sequence of (not necessarily different) edges, where consecutive
edges are incident to the same node. The sign of a walk is the product of the signs of its edges.

Lemma 4 (walk lemma): the (i,j)th element of the k-th power of the adjacency matrix, (Ak);, counts the
difference between the number of positive walks and the number of negative walks of length k between
nodes i and .

\J \\
-

i s s _sy W= {ezeaen) ‘ COMBINATORICS ‘
5 9 9 5 Wy = {612,821,613}
. _
A® = & 9 9 5 W3 = {e14, €41, €13} ‘
5 B 5 4 Wy = {e13, €34, €43} ALGEBRA
W5 = {e1s,e31,€13}

Zaslavsky, T. (1982). “Signed graphs”. Discrete Applied Mathematics 4, 47-74.



ucom

Structural balance

Harary's theory

Definition 5: A cycle or closed walk is balanced
or positive if it contains an even number of

negative edges.

Harary, F. (1953). “On the notion of balance of a signed graph”. Michigan Mathematical Journal, 2(2), 143-146.

Cartwright, D., & Harary, F. (1956). “Structural balance: a generalization of Heider's theory”. Psychological review, 63(5), 277.



Structural balance

ISC ucdm

Harary's theory

Definition 5: A cycle or closed walk is balanced
or positive if it contains an even number of

negative edges.

Definition 6: A signed network is balanced if
every cycle within it is balanced. Otherwise, the

network is unbalanced.

Balanced graph Unbalanced graph

* Harary, F. (1953). “On the notion of balance of a signed graph”. Michigan Mathematical Journal, 2(2), 143-146.
* Cartwright, D., & Harary, F. (1956). “Structural balance: a generalization of Heider's theory”. Psychological review, 63(5), 277.
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Balance theorems

Theorem 7 (Harary): a graph is balanced iff the node
set can be split into two balanced factions, such that:

« Links within each balanced faction are positive, and

 Links between different balanced factions are
negative.

Harary, F. (1953). “On the notion of balance of a signed graph”. Michigan Mathematical Journal, 2(2), 143-146.
Acharya (1980). “Spectral criterion for cycle balance in networks”. Journal of Graph Theory, 4(1), 1-11.
Zaslavsky (1982). “Signed graphs”. Discrete Applied Mathematics 4, 47-74.
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Balance theorems

Theorem 7 (Harary): a graph is balanced iff the node
set can be split into two balanced factions, such that:

« Links within each balanced faction are positive, and

 Links between different balanced factions are
negative.

Theorem 8 (Acharya): a signed graph with adjacency
matrix A is balanced if and only if A and |A| have the
same spectrum.

Harary, F. (1953). “On the notion of balance of a signed graph”. Michigan Mathematical Journal, 2(2), 143-146.

Acharya (1980). “Spectral criterion for cycle balance in networks”. Journal of Graph Theory, 4(1), 1-11.
Zaslavsky (1982). “Signed graphs”. Discrete Applied Mathematics 4, 47-74.
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How close is a network to a perfectly balanced state?
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How close is a network to a perfectly balanced state?

Motif-based approach: count balanced triangles or
squares.
* Cartwright and Harary (1956), Psychological Review 63.5, 277

Frustration-based approach (spin glass theory): count
frustrated edges.
* Aref and Wilson (2019), Journal of Complex Networks 7.2, 163—189

Dynamics-based approach: convergence to stationary
state of a diffusive process as a proxy for balance.

* Kunegis et al (2010), Proceedings of the 2010 SIAM international
conference on data mining, pp 559-570

Walk-based approach: count positive and negative walks
as a proxy for cycles.

* Estrada and Benzi (2014), Physical Review E, 90.4, 042802
* Kirkley, Cantwell, Newman (2019), Physical Review E 99.1, 012320




Walk-based balance indices
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Local (node-based) levels of balance

Node 3 has medium balance
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Local (node-based) levels of balance

Node 3 has medium balance

Challenges:

* How to enumerate all cycles? —» Walk lemma
 How to aggregate cycles of different length? —. Weight factor (inverse factorial)
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Balance index

1) Count balanced and unbalanced closed (Ak) )
walks (walk lemma): v

Estrada and Benzi. "Walk-based measure of balance in signed networks" PRE 90, 4 (2014): 042802.
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Balance index

1) Count balanced and unbalanced closed (Ak) )
walks (walk lemma): v

2) Include all walk lengths: E E A"“

k=0 1=1

Estrada and Benzi. "Walk-based measure of balance in signed networks" PRE 90, 4 (2014): 042802.
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Balance index

1) Count balanced and unbalanced closed (Ak) )
walks (walk lemma): v

2) Include all walk lengths: E E A"“

k=0 1=1

3) Penalize longer walks: Z Z i wo_ tr(eA)

k=0 1=1

Estrada and Benzi. "Walk-based measure of balance in signed networks" PRE 90, 4 (2014): 042802.
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Balance index

1) Count balanced and unbalanced closed (Ak) )
walks (walk lemma): v

2) Include all walk lengths: E E A"“

k=0 1=1
© (AF);; A
3) Penalize | lks:
) Penalize longer walks ZZ I — tr(e )
k=0 1=1
4) Normalize: g e tr(eA)
- tr(el4l)

Estrada and Benzi. "Walk-based measure of balance in signed networks" PRE 90, 4 (2014): 042802.
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Balance index

1) Count balanced and unbalanced closed (Ak) )
walks (walk lemma): v

2) Include all walk lengths: E E A"“

Balanced graph: k=1
Unbalanced graph: 0 < k< 1

k=0 1=1
© (AF);; A
3) Penalize | lks:
) Penalize longer walks ZZ I — tr(@ )
k=0 1=1
4) Normalize: g e tr(eA)
- tr(el4l)

Estrada and Benzi. "Walk-based measure of balance in signed networks" PRE 90, 4 (2014): 042802.
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Balance index

1) Count balanced and unbalanced closed (Ak) )
walks (walk lemma): v

2) Include all walk lengths: E E A"“

k=0 1=1

Balanced graph: k=1
Unbalanced graph: 0 < k< 1

Also local version!

| * o (A") s A
3) Penalize longer walks: ZZ X —tI'<€ ) (BA)ii

k=0 1=1 Ki; ‘= TIAD..
(€M)
4) Normalize: tr(e ) Diaz-Diaz, Bartesaghi, and Estrada
R .— (2024). Journal of Applied Mathematics
t 1“(6 ’ AI ) and Computing, 1-24.

Estrada and Benzi. "Walk-based measure of balance in signed networks" PRE 90, 4 (2014): 042802.
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Up to now, we have counted closed walks, to quantitatively measure balance.

Now, we will enumerate open walks, to quantitatively measure effective alliances and enmities.
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Up to now, we have counted closed walks, to quantitatively measure balance.

Now, we will enumerate open walks, to quantitatively measure effective alliances and enmities.

Nodes 3 and 4 are effective
enemies (up to length 3)
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Up to now, we have counted closed walks, to quantitatively measure balance.

Now, we will enumerate open walks, to quantitatively measure effective alliances and enmities.

Nodes 3 and 4 are effective
enemies (up to length 3)

= (4h),
Communicability matrix: Fz'j — Z — = (eA)ij

Diaz-Diaz and Estrada. "Signed graphs in data sciences via communicability geometry." Information Sciences 710 (2025): 122096.
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The distance problem in signhed graphs

Definition 11: a distance is a function d that satisfies the following axioms:
1) Non-negativity: d(i,j)=0

2) ldentity of indiscernibles: d(i,j)=0 iff i=|

3) Symmetry: d(i,j)=d(j,i)

4) Triangle inequality: d(i,j)+d(j,k)= d(i,k)
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Distances

The distance problem in signhed graphs

Definition 11: a distance is a function d that satisfies the following axioms:
1) Non-negativity: d(i,j)=0

2) Identity of indiscernibles: d(i,j)=0 iff i=j s e E Rl e
3) Symmetry: d(i,j)=d(j,i) a well-defined distance
)

i h?
4) Triangle inequality: d(i,j)+d(j,k)= d(i,k) on a signed grap

Example 12: minimum-weight distance in a signed graph:

.
i? Hlen |.|egaFt_|u|t|y. ™
3) Symmetry

\ Triangte ;
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The distance problem in signhed graphs

Definition 11: a distance is a function d that satisfies the following axioms:
1) Non-negativity: d(i,j)=0

2) ldentity of indiscernibles: d(i,j)=0 iff i=| How can we define

)
3) Symmetry: d(i,j)=d(j,i) a well-defined distance

igned graph?
4) Triangle inequality: d(i,j)+d(j,k)> d(i,K) on a sighed grap

Example 13: communicability distance in a signed graph:

&ij = /T + Ty — 21

Pt .

Very central nodes increase Effective enemies (negative comm)
the distance increase the distance
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Distances

The distance problem in signed graphs

Definition 13: a distance is a function d that satisfies the following axioms:

1) Non-negativity: d(i,j)=0

2) ldentity of indiscernibles: d(i,j)=0 iff i=|

3) Symmetry: d(i,j)=d(}.i) ¢ is a Euclidean distance,
)

4) Triangle inequality: d(i,j)+d(j,k)= d(i,k) even when the graph is
sighed

Example 13: communicability distance in a signed graph:

&ij =T+ 1T — 2T

» Diaz-Diaz and Estrada. "Signed graphs in data sciences via communicability geometry." Information Sciences 710 (2025): 122096.
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Dynamics on signhed networks

/

Images: Gava et al, Science 385.6713 1120-1127; Babul and Lambiotte, Comm. Phys



Diffusion in networks
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Masuda, N., Porter, M. A., & Lambiotte, R. (2017). Random walks and diffusion on networks. Physics reports, 716, 1-58.
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Masuda, N., Porter, M. A., & Lambiotte, R. (2017). Random walks and diffusion on networks. Physics reports, 716, 1-58.




Diffusion in networks

Masuda, N., Porter, M. A., & Lambiotte, R. (2017). Random walks and diffusion on networks. Physics reports, 716, 1-58.




Diffusion in networks ISC ucdm

Diffusion equation
for graphs

Masuda, N., Porter, M. A., & Lambiotte, R. (2017). Random walks and diffusion on networks. Physics reports, 716, 1-58.
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Definition 14: the Laplacian operator L of an unsigned network is given by:

/

LZ:<kz it Z:] where er:Z A’LJ
: —A;; otherwise j

\

Kunegis, Schmidt, Lommatzsch, Lerner, De Luca, & Albayrak. (2010). Spectral analysis of signed graphs for clustering, prediction and visualization.
In Proceedings of the 2010 SIAM international conference on data mining (pp. 559-570). SIAM
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Definition 15: the Laplacian operator L of a signed network is given by:

/

—A;; otherwise j

\

Kunegis, Schmidt, Lommatzsch, Lerner, De Luca, & Albayrak. (2010). Spectral analysis of signed graphs for clustering, prediction and visualization.
In Proceedings of the 2010 SIAM international conference on data mining (pp. 559-570). SIAM
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Definition 15: the Laplacian operator L of a signed network is given by:

4 . . .
LZJ _ k‘z lf ( :,7 where kz — Z |Aw|
\ —A;; otherwise j

Theorem 16: the Laplacian operator of a signed graph is a positive semidefinite. Moreover, L has a

null eigenvalue if and only if the graph is balanced.

Kunegis, Schmidt, Lommatzsch, Lerner, De Luca, & Albayrak. (2010). Spectral analysis of signed graphs for clustering, prediction and visualization.
In Proceedings of the 2010 SIAM international conference on data mining (pp. 559-570). SIAM



Diffusion on sighed networks

Linear dynamics (diffusion):

#(t) = —La(t)

—>

x(t) = ey




Diffusion on signed networks ISC ucom

Linear dynamics (diffusion):

i(t) = —Lz(t) = z(t) =e Lz

Eigenmode expansion:

zi(t) = ) e (i) e (§)mo(j)
k




Diffusion on signed networks ISC ucom
Linear dynamics (diffusion):
i(t) = —Lz(t) = z(t) =e Lz
Eigenmode expansion:
zi(t) = 3 e My (i)n (5) o ()
k
In the stationary state:
4 & . :
B if g =0 +1 if 2€ Gy
1 . = ) e <
tliglo :Ez(t) < (2/0)2 —1 if 72€ Gy

\ CYp otherwise

\




Diffusion on signed networks gISC ucdm

Theorem 17: the stationary state of a diffusive process on a signed network depends on the structural
balance of the network. In particular, the stationary state is:

* Consensus if the network is unsigned.

« Agreed dissensus if the network is balanced.

* Absence of opinions if the network is unbalanced.

Consensus Agereed dissensus Absence of opinions
5 T T T 5 , , 4
£ X4 4 X4 s X 4
Xo Xo 2 X2 |

3 X3 |1 Sk X5 |] X3
2

2-& 0
1t

y v )

- — — — — — — - "3

1 ' : -2 : : -4 L

0 5 10 15 20 0 5 10 15 20 0 5 10 1‘5 20
t t t

Altafini, C. (2012). Consensus problems on networks with antagonistic interactions. IEEE transactions on automatic control, 58(4), 935-946.
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Theorem 17: the stationary state of a diffusive process on a signed network depends on the structural
balance of the network. In particular, the stationary state is:
* Consensus if the network is unsigned.

« Agreed dissensus if the network is balanced.

* Absence of opinions if the network is unbalanced.

Determines

»
STRUCTURE DYNAMICS

Reveals

Altafini, C. (2012). Consensus problems on networks with antagonistic interactions. IEEE transactions on automatic control, 58(4), 935-946.



Some essential references glsc uc3m

Mathematics of signed graphs:
* Thomas Zaslavsky. “Signed Graphs”. Discrete Applied Mathematics 4 (1982), pages 47—-74.
* Thomas Zaslavsky. Matrices in the Theory of Signed Simple Graphs. 2013. arXiv: 1303.3083 [math].

Structural balance:

* Frank Harary. “On the Notion of Balance of a Signed Graph”. Michigan Mathematical Journal 2 (1953),
pages 143—-146

* Dorwin Cartwright and Frank Harary. “Structural Balance: A Generalization of Heider's Theory.”
Psychological Review 63.5 (1956), page 277.

Balance indices:
* Ernesto Estrada and Michele Benzi. “Walk-Based Measure of Balance in Signed Networks: Detecting Lack
of Balance in Social Networks”. Physical Review E 90.4 (2014), page 042802.

Laplacian and dynamics:

* Jérébme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jurgen Lerner, Ernesto W De Luca, and Sahin
Albayrak. “Spectral analysis of signed graphs for clustering, prediction and visualization”. Proceedings of
the 2010 SIAM international conference on data mining. SIAM. 2010, pages 559-570.

* Claudio Altafini. “Consensus problems on networks with antagonistic interactions”. IIEEE transactions on
automatic control 58.4 (2012), pages 935-946.
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Mappings to unsigned networks

Detection of communities and
factions
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Q: which signed network has mesoscale structure?
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Q: which signed network has mesoscale structure?

COMMUNITIES

FACTIONS




Communities and factions

Q: which signed network has mesoscale structure?




Communities and factions

Definition (Cut set)

For a partition V = U; U U,, the cut-set
C(U1, U,) is the set of edges with one
endpoint in U; and the other in Us>.

The edge connectivity k.(G) is the size of a

smallest cut-set of G. )

Communities have small edge connectivity



Communities and factions ISC ucdm

Definition (Frustration set)

Definition (Cut set)

For a partition V = U; U U», the cut-set A frustration set is a set of edges whose
C(U1, U) is the set of edges with one removal makes the signed graph balanced.
endpoint in U; and the other in U>. The frustration index ¢(G) is the size of a
The edge connectivity k.(G) is the size of a | smallest frustration set of G. |
smallest cut-set of G. )

Communities have small edge connectivity Factions have small frustration index
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Definition (Gremban expansion)

The Gremban expansion of a signed graph G is the unsigned graph G
with 2n vertices and 2m edges, defined as follows:

@ Each node v gets mapped to two polarities v and v—.

@ Positive links (u, v) get mapped to (u™,v") and (u—,

V™)
o Negative links (u, v) get mapped to (u*,v~) and (u—,v™).

G ()
Gremban expansion o=
c/: / "
U

Gremban. Combinatorial preconditioners for sparse, symmetric, diagonally dominant linear systems. PhD thesis, Carnegie Mellon University, 1996.




Gremban expansion ISC ucdm

Theorem (1)

A connected signed graph is balanced iff its Gremban expansion is

disconnected.
Gremban expansion f

7
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Theorem (1)

A connected signed graph is balanced iff its Gremban expansion is
disconnected.

Gremban expansion f

/ / 7 j//o
G g ot

~ Gremban expansion —

/°v
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Gremban involution

Definition (Gremban involution)

The Gremban involution n swaps the
two polarities of every node:

n(v)=v, nv)=v".

€1 €2

/ € Gremban involution 7 C/ eq
>

& &




Gremban involution gISC ucdm

Definition (Gremban involution) Definition (Gremban symmetry)
The Gremban involution 1 swaps the o A set (of nodes, edges, or a subgraph)
two polarities of every node: is Gremban-symmetric if it is invariant

under the involution 7, i.e.

n(v)=v, nv)=v".

n(X) = X.
@ A bipartition (U,U,) of V(G) is

Gremban-symmetric if n(Uy) = U; or
n(lh) = Us.

€1 €2
/ . Gremban involution 7 c/ .

& L
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Projecting back to sighed graphs

Definition (Projection map)

The projection 7 sends each polarity
back to its node:




Recap ISC ucom

So far, we have:

M A way to operationalize communities and factions (small cut-sets and small
frustration sets).

@ An operation, the Gremban expansion, that maps a signed graph to an unsigned
one.

@ A notion of symmetry in the expanded space (invariance under the involution n).

@ A way of projecting back to the original space, but only for Gremban-symmetric
objects.

What types of structures structure in
the expanded space correspond to
communities and factions?




Communities, factions, and Gremban expansions ISC ucdm

Theorem (3)

Every cut or frustration set in G lifts to a symmetric cut in G. Conversely,
every Gremban-symmetric bipartition (Uy,U>) of G projects to:

cut-sets in G if n(Uy) = U,
frustration sets in G if n(Uy) = Us.




Communities, factions, and Gremban expansions  JISC UCdm
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Recap: spectral clustering gISC ucom

Spectral Clustering Principle:
Low eigenvectors of the Laplacian have similar values on well-connected
nodes - eigenvectors of L reveal community structure

1N
/ NI/
—> o) [/
Compute k /2
eigoen\[/)eéfors BN <\7
of Laplacian
Spectral .
Graph Embedding Clusters

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416, 2007.
Image: Macgregor, Peter. "Fast and simple spectral clustering in theory and practice." Advances in Neural Information Processing Systems 36
(2023): 34410-34425.



Algebraic representation of Gremban expansions ISC ucodm

(D Signed adjacency matrix. A= AT — A

Jerome Kunegis et al. Spectral analysis of signed graphs for clustering, prediction and visualization. In Proceedings of the 2010 SIAM
international conference on data mining, pages 559-570. SIAM, 2010.



Algebraic representation of Gremban expansions

ucom

(D Signed adjacency matrix. A— AT — A—
(2 Gremban-expanded adjacency At A~

matrix (non-negative!). —

A= AT

Jerome Kunegis et al. Spectral analysis of signed graphs for clustering, prediction and visualization. In Proceedings of the 2010 SIAM
international conference on data mining, pages 559-570. SIAM, 2010.



Algebraic representation of Gremban expansions ISC ucdm

(D Signed adjacency matrix. A= AT — A

@ Gremban-expanded adjacency A"‘ v

matrix (non-negative!). A — A~ A+
CL=K—A

@ Laplacian of the expanded K— AT — A~

adjacency matrix. L = A~ K — A+

Jerome Kunegis et al. Spectral analysis of signed graphs for clustering, prediction and visualization. In Proceedings of the 2010 SIAM
international conference on data mining, pages 559-570. SIAM, 2010.



Algebraic representation of Gremban expansions JISC UCdm

Theorem (4)

Let L = K — A be the signed Laplacian and [ =K — |A| the unsigned
Laplacian. Then, L ~ L& L.

,C:Z/[(Z 0) /T Q ()\,X)EE=>()\,(X,—X))E£,
0 L o (my)e L= (u(y,y) €L




Algebraic representation of Gremban expansions JISC Ucodm

Theorem (4)

Let L = K — A be the signed Laplacian and L = K — |A| the unsigned
Laplacian. Then, L ~ L& L.

,C:Z/{(Z 0) T Q ()\,x)EE=>()\,(x,—x))€£,
0 L o (my)eLl= (m(y,y)) €L

Communities - Unsignhed topology - Unsighed Laplacian - Symmetric eigenvectors
- Gremban-symmetric node partitions

Factions — Signed topology - Signed Laplacian — Antisymmetric eigenvectors
- Gremban-antisymmetric node partitions



Spectral clustering in the Gremban expansion glsc ucodm

Algorithm:
@ Expand signed graph G — G.
@ Compute Laplacian £ of G.
@ Extract first non-constant k — 1 eigenvectors {15, ..., ¥k }.
@ Embed nodes in R*~! and run k-means.

@ Interpret clusters:

o Symmetric — communities
o Antisymmetric — factions inside communities

Diaz-Diaz, Fernando, Karel Devriendt, and Renaud Lambiotte. "Gremban Expansion for Signed Networks: Algebraic and Combinatorial
Foundations for Community-Faction Detection." arXiv preprint arXiv:2509.14193 (2025).



Spectral clustering in the Gremban expansion glsc ucodm

Algorithm:
@ Expand signed graph G — G.
@ Compute Laplacian £ of G.
@ Extract first non-constant k — 1 eigenvectors {15, ..., ¥k }.
@ Embed nodes in R*~! and run k-means.

@ Interpret clusters:

o Symmetric — communities
o Antisymmetric — factions inside communities

This detects both communities and factions and disentangles them in
a principled way!

Diaz-Diaz, Fernando, Karel Devriendt, and Renaud Lambiotte. "Gremban Expansion for Signed Networks: Algebraic and Combinatorial
Foundations for Community-Faction Detection." arXiv preprint arXiv:2509.14193 (2025).



Spectral clustering in the Gremban expansion

ucom
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Diaz-Diaz, Fernando, Karel Devriendt, and Renaud Lambiotte. "Gremban Expansion for Signed Networks: Algebraic and Combinatorial
Foundations for Community-Faction Detection." arXiv preprint arXiv:2509.14193 (2025).

Fox, Manteuffel, and Sanders. Numerical methods for Gremban’s expansion of signed graphs. SIAM Journal on Scientific Computing,
39(5):S945-S968, 2017
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Gremban expansion: conclusions g

* Signed graphs can show two mesoscale

‘e ; Results avaliable in:
structures: communities and factions.

* Using the Gremban expansion, we map a

: : : d I‘(lV > cs > arXiv:2509.14193
signed graph to an unsigned one without AN

IOSing Sign info rmation . Computer Science > Discrete Mathematics
[Submitted on 17 Sep 2025]

« Communities in the expanded graph map Gremban Expansion for Signed Networks:
back to communities or factions in the Algebraic and Combinatorial Foundations for
original, depending on the symmetry of the Community-Faction Detection
partition_ Fernando Diaz-Diaz, Karel Devriendt, Renaud Lambiotte

G

Gremban expansion

>




Thank you!

Gremban expansion:

Thank you for your attention

Contact: fddiaz@math.uc3m.es
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