PYSANUM

Pisan Young Seminars in Applied and NUmerical Mathematics

Informal seminar series on numerical analysis and applied mathematics aimed at students.
The aim of the meetings is to present numerical analysis research topics in an accessible manner and to involve interested students. The seminars will have an introductory first part and will also be accessible to those unfamiliar with the subject. They will be held mainly in Italian, in line with the informal tone of the series.
Master’s students and Bachelor’s students who are familiar with the contents of the Scientific Computing course are encouraged to attend.
Organised by PhD students from the University of Pisa and the Scuola Normale Superiore.

Upcoming Seminars

 4 pm- 27 November 2024

 Giovanni Barbarino (Université de Mons)

Aula Riunioni, Dipartimento di Matematica
Dual Simplex Volume Maximization for Simplex-Structured Matrix Factorization

La Fattorizzazione di matrici (MF) mira a decomporre una matrice di dati $X \in \mathbb{R}^{m \times n}$, dove le $n$ colonne rappresentano dei campioni di dimensione $m$, nel prodotto di due matrici più piccole, $W \in \mathbb{R}^{m \times r}$ e $H \in \mathbb{R}^{r \times n}$ , per cui $X \approx WH$. Spesso è cruciale imporre vincoli aggiuntivi ai fattori, come sparsità o non-negatività, per migliorare per esempio l’interpretabilità dei risultati.

Quando $W$ ha tante colonne quanto la sua dimensione affine più uno e tutte le colonne di $H$ sono stocastiche, si parla di fattorizzazione di matrici con struttura di simplesso (SSMF). Questo problema cerca un simplesso che racchiuda o approssimi al meglio i dati a disposizione. Il modello ha diverse applicazioni nel machine learning, con due esempi prominenti che includono l'”unmixing” di immagini iperspettrali e l’estrazione di topic nell’ambito dell’analisi testuale.

Nell’illustrare la teoria della SSMF, ci concentreremo sulle proprietà (separabilità, SSC) che rendono la fattorizzazione “unica”, e sui suoi legami con la Fattorizzazione di Matrici Non Negative (NMF). Presenteremo dunque alcuni degli algoritmi classici per calcolare la SSMF esatta quando esiste, e come si comporta in presenza di rumore. In particolare, discuteremo dell’Algoritmo delle Proiezioni Successive (SPA), delle sue varianti, e del metodo del Simplesso di Volume Minimo (MVES).

Introdurremo poi il concetto di dualità e lavoreremo sulla corrispondenza tra gli spazi primali e duali per fornire una nuova prospettiva sul come trovare un simplesso che modelli al meglio i dati. Dato una qualsiasi insieme $\mathcal S \subseteq \mathbb R^d$, il suo polare, denotato $\mathcal S^*$, è definito come
\[
\mathcal S^* := \left\{ \theta \in \mathbb R^d \, \big| \, \theta^\top x \le 1\,\, \text{ for all } x\in \mathcal S \right\}.
\]
\noindent Se $\mathcal S$ è un simplesso, allora $\mathcal S^*$ è un simplesso i cui vertici corrispondono alle facce di $\mathcal S$, e le relazioni di inclusione tra insiemi convessi sono invertite. Dopo un preprocessing, possiamo ridurre il problema a trovare una decomposizione per una matrice $$Y \in \mathbb R^{r-1 \times n}$$ che soddisfi $Y = P H$, con $H$ stocastica, o in maniera equivalente $\text{conv}(P)^* \subseteq \text{conv}(Y)^*$, che può essere scritto come $Y^\top \Theta \leq 1_{n \times r}$ dove $\text{conv}(\Theta) = \{ x \ | \ P^\top x \leq e \} = \text{conv}(P)^*$.

L’idea è dunque di massimizzare il volume di $\text{conv}(\Theta)$ nello spazio duale, legandoci così al metodo MVES che invece si proponeva di minimizzare il volume di $\text{conv}(P)^*$ nello spazio primale. Il problema finale sarà dato dal seguente modello
: dato $Y \in \mathbb{R}^{r-1 \times n}$, risolvere
\begin{equation} \label{eq:firstformupolar}
\max_{\Theta \in \mathbb{R}^{r-1 \times r}} \text{vol}\big( \text{conv}(\Theta) \big) \quad \text{ tale che } \quad Y^\top \Theta \leq 1_{n \times r}. \hspace{1cm} (1) \end{equation}
Discuteremo in dettaglio come risolvere (1) e delle sue garanzie di identificabilità quando i dati sono separabili, o quando la SSC (Condizione di Sufficiente Dispersione) è soddisfatta. Introduciamo anche il concetto di $\eta$-espansione dei dati per studiare anche cosa succede nei casi intermedi. Concludiamo fornendo degli esperimenti numerici su set di dati sia sintetici che reali, comparando il metodo sviluppato con SPA, MVES e altri algoritmi, e mostrando così che l’algoritmo proposto compete favorevolmente con lo stato dell’arte.

 

 4.30 pm – 12 December 2024

 Francesca Ballatore (Politecnico di Torino)

Aula Seminari, Dipartimento di Matematica


Modelling brain tumour growth and ventricle deformation: a patient-specific numerical approach

I tumori cerebrali rappresentano una delle sfide più complesse in ambito medico a causa della loro localizzazione spesso imprevedibile e della variabile malignità.
In particolare, i tumori cerebrali sono noti per l’aggressività con cui si diffondono, ostacolando l’efficacia dei trattamenti standard.
La crescita della massa tumorale provoca compressione e spostamento dei tessuti sani circostanti, con possibili variazioni nel volume dei ventricoli cerebrali e un conseguente aumento della pressione intracranica, che può condurre a gravi complicazioni neurologiche.
Attualmente, il protocollo terapeutico per i tumori cerebrali prevede una resezione chirurgica, seguita, se necessario, da radioterapia e chemioterapia.

In questo lavoro proponiamo un modello meccanico multifase per descrivere la crescita del tumore cerebrale, quantificando le deformazioni e le tensioni solide indotte dall’espansione tumorale.
Il modello tiene conto dell’influenza della direzione delle fibre della materia bianca, che guida la crescita anisotropa del tumore.
Per la costruzione di geometrie tridimensionali realistiche del cervello e una precisa rappresentazione dei ventricoli, il modello incorpora dati ottenuti da risonanza magnetica (MRI) e imaging con tensore di diffusione (DTI) specifici per ogni paziente.
Grazie a queste integrazioni, il modello consente di analizzare l’impatto meccanico della crescita tumorale sulla compressione dei ventricoli e sulle aree di tessuto cerebrale sano limitrofe.

I risultati numerici ottenuti tramite simulazioni agli elementi finiti con il software FEniCS dimostrano l’accuratezza del modello nel riprodurre la complessa dinamica della crescita tumorale e il relativo impatto meccanico sui tessuti cerebrali circostanti.
Le informazioni fornite dal modello possono supportare lo sviluppo di strategie terapeutiche mirate e personalizzate, migliorando la gestione clinica dei pazienti affetti da tumori cerebrali.

[1] F. Ballatore, G. Lucci, and C. Giverso. “Modelling and simulation of anisotropic growth in brain tumours through poroelasticity: A study of ventricular compression and therapeutic protocols”. In: Computational Mechanics (2024).

[2] F. Ballatore, G. Lucci, A. Borio, and C. Giverso. “An imaging-informed mechanical framework to provide a quantitative description of brain tumour growth and the subsequent deformation of white matter tracts”. In: Mathematical Models and Computer Simulations for Biomedical Applications.
Ed. by G. Bretti, R. Natalini, P. Palumbo, and L. Preziosi. Springer Series, 2023.